
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Exercises for the practical classes of
Knowledge Representation and Reasoning

Ana Cardoso-Cachopo

2011/2012

CONTENTS i

Contents

1 Introduction 1

2 The Language of First-Order Logic 3

3 Expressing Knowledge 9

4 Resolution 13

5 Reasoning with Horn Clauses 19

6 Procedural Control of Reasoning 25

7 Rules in Production Systems 27

8 Object-Oriented Representation 31

9 Structured Descriptions 37

10 Inheritance 45

11 Defaults 51

12 Vagueness, Uncertainty, and Degrees of Belief 61

13 Explanation and Diagnosis 67

14 Actions 73

15 Planning 77

16 The Tradeoff between Expressiveness and Tractability 81

ii CONTENTS

CONTENTS iii

Preface

This document contains a collection of exercises for the subject “Knowledge
Representation and Reasoning” of the Master Degree (MSc) in Information Sys-
tems and Computer Engineering, based on the book Knowledge representation and
reasoning, by Ronald Brachman and Hector Levesque.

Some of these exercises are taken from the book, some are available in the
internet and some I created to use in the practical classes or exams.

iv CONTENTS

1

1 Introduction

Exercise 1.1 (new)
Explain why an AI system needs knowledge representation and reasoning.

Answer:

An AI system needs knowledge in order to have information about the world, and the informa-
tion needs to be represented in some way. Reasoning is useful for the system to be able to draw
new conclusions from the information that it has initially stored.

Exercise 1.2 (new)
Explain the need for reasoning in a knowledge-based system.

Answer:

See page 9. Knowledge-based systems represent information about a particular domain. Reaso-
ning is used to infer new knowledge from the one that was explicitly represented. If there was no
reasoning, we woud have a knowledge base and not a knowledge-based system. One should note
that usually the knowledge that is explicitly represented is a lot less than the knowledge that can
be inferred from it.

Exercise 1.3 (new)
Comment the following statement: “The use of meaningful names to represent terms
and predicates in a logic representation makes inference easier for the reasoning mecha-
nism.”.

Answer:

The statement is wrong. Meaningful names help a human that reads a representation, but make
no difference for the reasoning mechanism.

Exercise 1.4 (new)
Explain why logic is such an important language for the area of knowledge representa-
tion and reasoning.

Answer:

The reason logic is relevant to knowledge representation and reasoning is simply that, at least
according to one view, logic is the study of entailment relations: languages, truth conditions,
and rules of inference. It must be stressed, however, that FOL itself is also just a starting point.
We will have good reason in what follows to consider subsets and super- sets of FOL, as well
as knowledge representation languages quite different in form and meaning. Just as we are not
committed to understanding reasoning as the computation of entailments, even when we do so
we are not committed to any particular language.

2 1 INTRODUCTION

3

2 The Language of First-Order Logic

Exercise 2.1 (new)
Distinguish between function symbols and predicate symbols in first-order logic. Give one
suitable example for each of them.

Answer:

Exercise 2.2 (new)
In propositional logic an interpretation is composed only by its interpretation function
(that is, it does not have a domain). Explain why.

Answer:

Exercise 2.3 (new)
Explain why it does not make sense to consider an equality function in propositional
logic.

Answer:

Exercise 2.4 (new)
Is first order logic an adequate language to represent a knowledge base about time (time
points, time intervals, etc)? Explain why.

Answer:

Exercise 2.5 (Ch 2, Ex 1)
For each of the following sentences, give a logical interpretation that makes that sentence
false and the other two sentences true:

1. ∀x∀y∀z[(P (x, y) ∧ P (y, z)) ⊃ P (x, z)]

2. ∀x∀y[(P (x, y) ∧ P (y, x)) ⊃ (x = y)]

3. ∀x∀y[P (a, y) ⊃ P (x, b)]

Answer:

An interpretation is a pair 〈D, I〉whereD is the domain and I is the interpretation mapping. This
is what we must provide to answer this exercise.

1. For this sentence to be false, we need a non-transitive relation. We can get that with D =
{A,B,C,D} and I(a) = A, I(b) = B, I(c) = C, I(d) = D, I(P) = {(B,C), (C,D)}. With
this interpretation for P , the relation is not transitive because the tuple (B,D) is not in the
relation. The second sentence is true because there is no variable assignment that makes the
antecedent of the entailment true, so the entailment is always true and so is the universally
quantified formula. The third sentence is true for the same reason (in this case there is no
tuple in I(P) such that A is its first element).

4 2 THE LANGUAGE OF FIRST-ORDER LOGIC

2. For this sentence to be false we need a non-symmetric but reflexive relation. We can get
that with D = {A,B,C,D} and I(a) = A, I(b) = B, I(c) = C, I(d) = D, I(P) =
{(B,C), (C,B), (B,B), (C,C)}. With this, the antecedent of the second sentence is true for
variable assignment µ(x) = B,µ(y) = C, butB 6= C, so the sentence is not true for all x and
y. The first sentence is true because for the variable assignments that make the antecedent
of the entailment true, its consequent is also true, so the entailment is always true and so is
the universally quantified formula. The third sentence is true because there is no variable
assignment that makes its antecedent true, because there is no tuple in I(P) such that A is
its first element.

3. It is hard to find a meaning for this sentence... It is false for D = {A,B,C,D} and I(a) =
A, I(b) = B, I(c) = C, I(d) = D, I(P) = {(A,C)}, because the antecedent is true for
variable assignment µ(y) = C, but the consequent is false, so the sentence is not true for all
x and y. The first two sentences are true because their antecedents are false for all variable
assignments.

Exercise 2.6 (Ch 2, Ex 4)
In a certain town, there are the following regulations concerning the town barber:

• Anyone who does not shave himself must be shaved by the barber

• Whomever the barber shaves, must not shave himself.

Show that no barber can fulfill these requirements. That is, formulate the requirements
as sentences of FOL and show that in any interpretation where the first regulation is true,
the second one must be false. (This is called the barber’s paradox and was formulated by
Bertrand Russel.)

Hint: introduce a constant barber for the *unique* barber and a binary predicate Shaves(x, y)
meaning that x shaves y.

Answer:

Translation:

1. ∀x[¬Shaves(x, x) ⊃ Shaves(barber, x)]

2. ∀x[Shaves(barber, x) ⊃ ¬Shaves(x, x)]

Suppose some interpretation (D, I) satisfies both 1 and 2. There is an object in D which is the
meaning of ’barber’ in that interpretation, I(barber). Let us call it b. This b either shaves himself
or not, or in logic, the pair (b, b) is either in the interpretation I(Shaves) of the predicate Shaves,
or not.

First suppose that (b, b) ∈ I(Shaves). Then, because the second sentence is true in (D, I), we have
that, for every assignment v, (D, I), v |= Shaves(barber, x) ⊃ ¬Shaves(x, x), in particular for v
which assigns b to x. In plain English: because the sentence is true for all x, it must be true for the
barber. So we have (D, I), v |= ¬Shaves(barber, barber), which means that (b, b) /∈ I(Shaves). A
contradiction with our initial fact.

So suppose that (b, b) /∈ I(Shaves). Because the first sentence is true in (D, I), for every as-
signment v, (D, I), v |= ¬Shaves(x, x) ⊃ Shaves(barber, x); in particular this holds for v with
v(x) = b. Because (b, b) /∈ I(Shaves), (D, I), v |= ¬Shaves(x, x) and also because the implica-
tion is true, (D, I), v |= Shaves(barber, barber) but the latter means that (b, b) ∈ I(Shaves). A
contradiction again.

5

Because we get a contradiction whether (b, b) ∈ I(Shaves) or (b, b) /∈ I(Shaves), we cannot make
both sentences true for the barber.

Exercise 2.7 (from http://www.cs.nott.ac.uk/~nza/G53KRR/)
Consider the following set of sentences:

S1 Andrew is the father of Bob.

S2 Bob is the father of Chris.

S3 Every grandfather is someone´s father.

S4 Andrew is a grandfather of Chris.

1. Translate these sentences into first-order logic, using binary predicates Father and
Grandfather and constants a, b, c for Andrew, Bob and Chris.

2. Show semantically (by reasoning about interpretations) that S1-S3 do not logically
entail S4.

3. Write in first-order logic an additional sentence that defines a general property of
grandfathers, and show that S1-S3 together with this new sentence entail S4.

Answer:

1. The sentences are:

S1 Father(a, b)

S2 Father(b, c)

S3 ∀x[∃y[Grandfather(x, y) ⊃ ∃z[Father(x, z)]]]
S4 Grandfather(a, c)

2. To show that S1-S3 do not logically entail S4 we must provide an interpretation which ma-
kes S1-S3 true and S4 false. Consider an interpretationM = (D, I) whereD = {Andrew,Bob, Chris},
the constants are interpreted in the obvious way, I(Father) = {(Andrew,Bob), (Bob,Chris)},
and I(Grandfather) is empty. Then in M , S1-S3 are true and Grandfather(a, c) is false.

3. The sentence is: ∀xyz[(Father(x, y) ∧ Father(y, z)) ⊃ Grandfather(x, z)]
Now every interpretation which satisfies Father(a, b), Father(b, c), that is, where
{(Andrew,Bob), (Bob,Chris)} ⊆ I(Father), has to have {(Andrew,Chris)} ⊆ I(Grandfather),
so has to satisfy Grandfather(a, c).

Exercise 2.8 (Ch 2, Ex 1)
Consider the following set of sentences:

S1 Five is larger than three.

S2 Three is larger than one.

S3 For every number there is another number that is larger than it (the first number).

S4 Five, three and one are numbers.

6 2 THE LANGUAGE OF FIRST-ORDER LOGIC

S5 Five is larger than one.

1. Translate these sentences into first-order logic.

2. Show semantically (by reasoning about interpretations) that S1-S4 do not logically
entail S5.

3. Write in first-order logic an additional sentence that defines a general property of
numbers, and show that S1-S4 together with this new sentence entail S5.

Answer:

Exercise 2.9 (new)
Consider the following set of sentences:

S1 Jack is Rob’s brother.

S2 Rob is Mike’s brother.

S3 If one person is someone else’s brother, then this second person also is a brother to
the first one.

S4 Jack, Rob and Mike are people.

S5 Jack is Mike’s brother.

1. Translate these sentences into first-order logic.

2. Show semantically (by reasoning about interpretations) that S1-S4 do not logically
entail S5.

3. Write in first-order logic an additional sentence that defines a general property of
brothers, and show that S1-S4 together with this new sentence entail S5.

Answer:

Exercise 2.10 (new)
Consider the following set of sentences:

S1 Neil likes every person that is nice.

S2 Mike is not annoying.

S3 If a person is not annoying, then that person is nice.

S4 If a person is nice, then there is some other person that likes her.

S5 Neil is a person.

S6 Neil likes Mike.

7

1. Translate these sentences into first-order logic.

2. Show semantically (by reasoning about interpretations) that S1-S5 do not logically
entail S6.

3. Write in first-order logic an additional sentence, and show that S1-S5 together with
this new sentence entail S6.

Answer:

8 2 THE LANGUAGE OF FIRST-ORDER LOGIC

9

3 Expressing Knowledge

Exercise 3.1 (Ch 3, Ex 1)
Consider the following piece of knowledge:

Tony, Mike and John belong to the Alpine Club. Every member of the Alpine
Club who is not a skier is a mountain climber. Mountain climbers do not
like rain, and anyone who does not like snow is not a skier. Mike dislikes
whatever Tony likes, and likes whatever Tony dislikes. Tony likes rain and
snow.

1. Prove that the given sentences logically entail that there is a member of the Alpine
Club who is a mountain climber but not a skier.

2. Suppose we had been told that Mike likes whatever Tony dislikes, but we had not
been told that Mike dislikes whatever Tony likes. Prove that the resulting set of
sentences no longer logically entails that there is a member of the Alpine Club who
is a mountain climber but not a skier.

Answer:

1. One possible solution consists in using the following predicates and constants:

MemberAC unary predicate meaning a member of the Alpine Club

Skier unary predicate meaning a skier

Climber unary predicate meaning a mountain climber

Likes binary predicate where Likes(x, y) means that x likes y

constants: tony, mike, john, rain, snow

Translation into first order logic, giving sentences names so that it is easy to refer to them
later.

Tony, Mike and John belong to the Alpine Club.

S1 MemberAC(tony)

S2 MemberAC(mike)

S3 MemberAC(john)

It is also possible to translate them as one conjunction
MemberAC(tony) ∧MemberAC(mike) ∧MemberAC(john)

Every member of the Alpine Club who is not a skier is a mountain climber.

S4 ∀x[(MemberAC(x) ∧ ¬Skier(x)) ⊃ Climber(x)]

Mountain climbers do not like rain.

S5 ∀x[Climber(x) ⊃ ¬Like(x, rain)]

Anyone who does not like snow is not a skier.

S6 ∀x[¬Like(x, snow) ⊃ ¬Skier(x)]

10 3 EXPRESSING KNOWLEDGE

Mike dislikes whatever Tony likes and likes whatever Tony dislikes.

S7 ∀x[Like(tony, x) ⊃ ¬Like(mike, x)]

S8 ∀x[¬Like(tony, x) ⊃ Like(mike, x)]

Tony likes rain and snow.

S9 Like(tony, rain)

S10 Like(tony, snow)

Proving that S1-S10 logically entail ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)].
Consider any interpretation (D, I) where S1-S10 are true. We have to show that
(D, I) |= ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)].
The way to do this is to prove that there is some object d ∈ D such that if an assignment v
assigns d to x, then
(D, I), v |= MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)
in other words, find an object d ∈ D such that
d ∈ I(MemberAC), d ∈ I(Climber), d /∈ I(Skier)

Our only hold on which objects exist in D is that we know that D contains interpretations
of tony, mike, john, rain and snow: I(tony) ∈ D, I(mike) ∈ D, and so on. We know of
some of the properties of those objects because (D, I) satisfies the sentences S1-S10.
For example from S1, (D, I) |= MemberAC(tony)
from the truth conditions we know that I(tony) ∈ I(MemberAC) (the object which is called
’tony’ in (D, I) belongs to the set of things which are considered Club Members in (D, I)).
For one of those objects, we need to prove that it is in I(MemberAC), in I(Climber), and is
not in I(Skier). Clearly john, rain and snow are non-starters.
Let us check if it could be true that I(tony) ∈ I(Climber). From S9, we know that (I(tony), I(rain)) ∈
I(Like). If I(tony) were in I(Climber), then there is an assignment v which assigns I(tony)
to x such that (D, I), v 2 Climber(x) ⊃ ¬Like(x, rain) because Climber(x) is true un-
der v and ¬Like(x, rain) is false. But this contradicts sentence S5 being true (it says that
Climber(x) ⊃ ¬Like(x, rain) is true for all assignments). So Tony can’t be a climber.
Our last hope is Mike. From S10 we know that (I(tony), I(snow)) ∈ I(Like). From S7 we
know that for every assignment v, (D, I), v |= Like(tony, x) ⊃ ¬Like(mike, x) in particular
if v(x) = I(snow), we get that (D, I), v |= ¬Like(mike, x). So (I(mike), I(snow)) /∈ I(Like).
From S6 we know that for every v, (D, I), v |= ¬Like(x, snow) ⊃ ¬Skier(x) in particular
if v(x) = I(mike) this should also be true. So I(mike) /∈ I(Skier). Finally, from S4 we
know that the set of members who are not skiers is included in the set of climbers, so since
I(mike) ∈ I(MemberAC) and I(mike) /∈ I(Skier) then I(mike) ∈ I(Climber). We have
found an object with desired properties: if v(x) = I(mike),
(D, I), v |= MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)
so
(D, I) |= ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)]

OR
We need to prove: ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)]
From S7, S10 get: ¬Like(mike, snow) — S11
From S11, S6 get: ¬Skier(mike) — S12
From S2, S12 get: Climber(mike) — S13
From S2, S12, S13 get: MemberAC(mike) ∧ Climber(mike) ∧ ¬Skier(mike) — S14
From S14 get: ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)]

2. Suppose we do not have S7, only S1-S6 and S8-S10. Prove that ∃x[MemberAC(x)∧Climber(x)∧
¬Skier(x)] no longer follows. To do this, we have to produce an interpretation where S1-S6
and S8-S10 are true and the last sentence is false. The interpretation could be like this (there
are other possible ones): D = {t,m, j, s, r} Interpretation:
I(tony) = t, I(mike) = m, I(john) = j, I(snow) = s, I(rain) = r

11

I(MemberAC) = {t,m, j}
I(Skier) = {t,m, j}
I(Climber) = {}
I(Like) = {(t, s), (t, r), (m, s), (m, r), (m,m), (m, t), (m, j), (j, s)} (that is, Tony likes rain
and snow as before, Mike likes every single object in the universe, John likes snow, and
rain and snow don’t have any feelings about things).
Now S1-S3 are obviously true. S4 is trivially true because there is no member who is not a
skier. S5 is also trivially true because there are no climbers. S6 is true because the only ski-
ers we have are t,m, j and they all like snow. S8 is true because Mike likes everything.
S9 and S10 are true because we included (t, s), (t, r) in I(Like). Finally, the sentence
∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)] is false because there are no climbers so we
cannot find an assignment to x which would make Climber(x) true.

12 3 EXPRESSING KNOWLEDGE

13

4 Resolution

Exercise 4.1 (new)
There is one possible refinement to resolution that consists in eliminating pure clauses
from the initial set of clauses (pure clauses are the ones that contain some literal p such
that ¬p does not appear anywhere). Explain why this refinement does not change the
results obtainable by resolution.

Answer:

When there is a pure literal in one clause, if its negation doesn’t appear anywhere else, it will
be impossible to eliminate the literal. This way, we will never be able to achieve a contradiction
using this clause. So we may simply not use this clause because, if there is a way to reach a
contradiction, it will not use this clause.

Exercise 4.2 (new)
Define what is a formula in conjunctive normal form. Give one example.

Answer:

Exercise 4.3 (new)
Explain what it means to say that resolutions is not complete, but is refutation complete.
State the consequences of this fact for the proofs made using resolution.

Answer:

Exercise 4.4 (new)
Explain why automated reasoning systems based on logic (propositional or first order
logic) make proofs using resolution and not the logic’s semantic system.

Answer:

Exercise 4.5 (Ch 4, Ex 1)
Determine whether the following sentence is valid using resolution:

∃x∀y∀z((P (y) ⊃ Q(z)) ⊃ (P (x) ⊃ Q(x)))

Answer:

To do this we need to check if from the negation of the sentence we can derive an empty clause (a
contradiction). So, the formula that needs to be transformed to clausal form is the negation of the
original formula:

¬∃x∀y∀z[(P (y) ⊃ Q(z)) ⊃ (P (x) ⊃ Q(x))]
¬∃x∀y∀z[¬(¬P (y) ∨Q(z)) ∨ (¬P (x) ∨Q(x))]
∀x∃y∃z¬[¬(¬P (y) ∨Q(z)) ∨ (¬P (x) ∨Q(x))]
∀x∃y∃z[¬¬(¬P (y) ∨Q(z)) ∧ ¬(¬P (x) ∨Q(x))]
∀x∃y∃z[(¬P (y) ∨Q(z)) ∧ (¬¬P (x) ∧ ¬Q(x))]
∀x∃y∃z[(¬P (y) ∨Q(z)) ∧ P (x) ∧ ¬Q(x)]
∀x[(¬P (f(x)) ∨Q(g(x))) ∧ P (x) ∧ ¬Q(x)]
{[¬P (f(x)), Q(g(x))], [P (x)], [¬Q(x)]}

Clauses:

14 4 RESOLUTION

C1 [¬P (f(x)), Q(g(x))]

C2 [P (x)]

C3 [¬Q(x)]

Proof:
(1) [Q(g(f(x)))] from C1 and C2, x/f(x)
(2) [] from (1) and C3, x/g(f(x))

or

1 [¬P (f(x)), Q(g(x))] Prem
2 [P (x)] Prem
3 [¬Q(x)] Prem
4 [Q(g(f(x)))] Res, (1, 2), {x/f(x)}
5 [] Res, (3, 4), {x/g(f(x))}

or

[¬P (f(x)), Q(g(x))] [P (x)] [¬Q(x)]

[Q(g(f(x)))]

{x/f(x)}

[]

{x/g(f(x))}

Exercise 4.6 (Ch 4, Ex 2, follow-up of Ch 3, Ex 1)
Use resolution to prove that there exists a member of the Alpine club who is a climber
but not a skier.

Answer:

Translation into first order logic.

S1 MemberAC(tony)

S2 MemberAC(mike)

S3 MemberAC(john)

S4 ∀x[MemberAC(x) ∧ ¬Skier(x) ⊃ Climber(x)]

S5 ∀x[Climber(x) ⊃ ¬Like(x, rain)]

S6 ∀x[¬Like(x, snow) ⊃ ¬Skier(x)]

S7 ∀x[Like(tony, x) ⊃ ¬Like(mike, x)]

S8 ∀x[¬Like(tony, x) ⊃ Like(mike, x)]

S9 Like(tony, rain)

S10 Like(tony, snow)

S11 ∃x[MemberAC(x) ∧ Climber(x) ∧ ¬Skier(x)]

Same in clausal form, but negating the conclusion S11:

15

C1 [MemberAC(tony)]

C2 [MemberAC(mike)]

C3 [MemberAC(john)]

C4 [¬MemberAC(x), Skier(x), Climber(x)]

C5 [¬Climber(x),¬Like(x, rain)]

C6 [Like(x, snow),¬Skier(x)]

C7 [¬Like(tony, x),¬Like(mike, x)]

C8 [Like(tony, x), Like(mike, x)]

C9 [Like(tony, rain)]

C10 [Like(tony, snow)]

C11 Negation of S11: ∀x[¬MemberAC(x) ∨ ¬Climber(x) ∨ Skier(x)]
[¬MemberAC(x),¬Climber(x), Skier(x)]

Proof that together C1-C11 are inconsistent:
(1) [¬Like(mike, snow)] from C10 and C7
(2) [¬Skier(mike)] from (1) and C6
(3) [¬MemberAC(mike), Climber(mike)] from (2) and C4
(4) [Climber(mike)] from (3) and C2
(5) [¬MemberAC(mike), Skier(mike)] from (4) and C11
(6) [Skier(mike)] from (5) and C2
(7) [] from (6) and (2)

or

[¬MemberAC(x),¬Climber(x), Skier(x)] [¬MemberAC(x), Skier(x), Climber(x)]

[¬MemberAC(x), Skier(x)]

ε

[MemberAC(mike)]

[Skier(mike)]

{x/mike}

[Like(x, snow),¬Skier(x)]

[Like(mike, snow)]

{x/mike}

[¬Like(tony, x),¬Like(mike, x)]

[¬Like(tony, snow)]

{x/snow}

[Like(tony, snow)]

[]

ε

Exercise 4.7 (new)
Consider the following set of sentences.
Using resolution, prove that Mammal(winnie).

S1 ∀x[(Animal(x) ∧HasHair(x)) ⊃Mammal(x)]

S2 ∀x[Bear(x) ⊃ (Animal(x) ∧HasHair(x))]

16 4 RESOLUTION

S3 ∀x[Rabbit(x) ⊃Mammal(x)]

S4 Bear(winnie)

S5 Rabbit(bugsbunny)

S6 Animal(sylvester) ∧HasHair(sylvester)

Answer:

To answer the question, we need to have each of the formulas corresponding to the problem’s
premisses in clausal form.

C1 [¬Animal(x),¬HasHair(x),Mammal(x)]

C2, C3 {¬Bear(x) ∨ (Animal(x) ∧HasHair(x))}
[¬Bear(x), Animal(x)], [¬Bear(x), HasHair(x)]

C4 [¬Rabbit(x),Mammal(x)]

C5 [Bear(winnie)]

C6 [Rabbit(bugsbunny)]

C7, C8 [Animal(sylvester)], [HasHair(sylvester)]

To find out if Winnie is a mammal, we need to answer a True/False question. In this case, we want
to know if the clause Mammal(winnie) can be derived from the initial set of clauses. Because not
all initial clauses are necessary, only the ones needed for the proof will be represented.

[¬Bear(x), Animal(x)] [Bear(winnie)] [¬Bear(x), HasHair(x)]

[Animal(winnie)]

{x/winnie}

[HasHair(winnie)]

{x/winnie}

[¬Animal(x),¬HasHair(x),Mammal(x)]

[¬Animal(winnie),Mammal(winnie)]

{x/winnie}

[Mammal(winnie)]

ε

We can also show a resolution proof, instead of a resolution tree:

1 [¬Bear(x), Animal(x)] Prem
2 [Bear(Winnie)] Prem
3 [¬Bear(x), HasHair(x)] Prem
4 [¬Animal(x),¬HasHair(x),Mammal(x)] Prem
5 [Animal(winnie)] Res, (1, 2), {x/winnie}
6 [HasHair(winnie)] Res, (2, 3), {x/winnie}
7 [¬Animal(winnie),Mammal(winnie)] Res, (4, 6), {x/winnie}
8 [Mammal(winnie)] Res, (5, 7), {}

Obviously, these are only examples of possible proofs, we could also perform refutation proof, by
negating what we are trying to prove and reaching a contradiction.

17

Exercise 4.8 (new)
Consider the following set of sentences.
Using resolution, prove that Thick(lordOfTheRings) ∧ ¬Thick(time).

S1 ∀x[(Book(x) ∧ManyPages(x)) ⊃ Thick(x)]

S2 ∀x[Magazine(x) ⊃ (¬Thick(x) ∧ ¬Book(x))]

S3 Book(lordOfTheRings) ∧Magazine(time)

S4 ManyPages(lordOfTheRings)

Answer:

Exercise 4.9 (new)
Consider the following set of sentences. Using resolution, prove that R(a, f(f(a)).

S1 ∀x, y, z[(R(x, y) ∧R(y, z)) ⊃ R(x, z)]

S2 ∀x[R(x, f(x)) ⊃ R(f(x), f(f(x)))]

S3 R(a, f(a))

Answer:

Exercise 4.10 (new)
Using resolution, prove that the formula

((P ⊃ ¬R) ∧ (¬P ⊃ R)) ⊃ (¬(P ∧R) ∧ ¬(¬P ∧ ¬R))

is a theorem.

Answer:

18 4 RESOLUTION

19

5 Reasoning with Horn Clauses

Exercise 5.1 (new)
Explain what is a Horn clause. In particular, explain its difference to a (general) clause.

Answer:

A clause is a disjunction of literals or their negations. A Horn clause is a clause that has at most
um positive literal, which is the head of the clause.

Exercise 5.2 (new)
Explain how the formulas A→ B and A ∨B would look like as Horn clauses.

Answer:

Exercise 5.3 (new)
Explain the reason why it is necessary to use at least one positive clause when performing
resolution with Horn clauses. In particular, explane why it is not possible to use two
negative clauses when applying resolution with Horn clauses.

Answer:

Exercise 5.4 (new)
Explain why resolution using Horn clauses is more efficient than general resolution (using
any types of clauses).

Answer:

Exercise 5.5 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Assume given a set of facts of the form father(name1,name2), meaning that name1
is the father of name2.

1. Define a predicate brother(X,Y) which holds iff X and Y are brothers.

2. Define a predicate cousin(X,Y) which holds iff X and Y are cousins.

3. Define a predicate grandson(X,Y) which holds iff X is a grandson of Y.

4. Define a predicate descendant(X,Y) which holds iff X is a descendant of Y.

5. Consider the following genealogical tree:

father(a,b). % 1
father(a,c). % 2
father(b,d). % 3
father(b,e). % 4
father(c,f). % 5

whose graphical representation is:

20 5 REASONING WITH HORN CLAUSES

a
/ \

b c
/ \ |
d e f

Say which answers, and in which order, are generated by your definitions for the
queries, assuming that you ask for all the solutions (using ;).

?- brother(X,Y).
?- cousin(X,Y).
?- grandson(X,Y).
?- descendant(X,Y).

Answer:

1. brother(X,Y) :- father(Z,X), father(Z,Y), not(X=Y).

2. cousin(X,Y) :- father(Z,X), father(W,Y), brother(Z,W).

3. grandson(X,Y) :- father(Z,X), father(Y,Z).

4. descendent(X,Y) :- father(Y,X).
descendent(X,Y) :- father(Z,X), descendent(Z,Y).

5. ?- brother(X,Y).
X = b Y = c ;
X = c Y = b ;
X = d Y = e ;
X = e Y = d ;
No

?- cousin(X,Y).
X = d Y = f ;
X = e Y = f ;
X = f Y = d ;
X = f Y = e ;
No

?- grandson(X,Y).
X = d Y = a ;
X = e Y = a ;
X = f Y = a ;
No

?- descendent(X,Y).
X = b Y = a ;
X = c Y = a ;
X = d Y = b ;
X = e Y = b ;
X = f Y = c ;
X = d Y = a ;
X = e Y = a ;
X = f Y = a ;
No

21

Exercise 5.6 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Define a predicate mylength(L,N) which holds iff N is the length of the list L.

Answer:

% :- redefine_system_predicate(length(_,_)).
mylength([],0).
mylength([_|L],N) :- mylength(L,M), N is M+1.

Exercise 5.7 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Define a predicate sumlist(L,N) which, given a list of integers L, returns the sum N of
all the elements of L.

Answer:

sumlist([],0).
sumlist([X|L],N) :- sumlist(L,M), N is M+X.

Exercise 5.8 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Define a predicate occurrences(X,L,N) which holds iff the element X occurs N times
in the list L.

Answer:

occurrences(_,[],0).
occurrences(X,[X|L],N) :- occurrences(X,L,M), N is M+1.
occurrences(X,[Y|L],N) :- not(X=Y), occurrences(X,L,N).

Exercise 5.9 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Define a predicate occurs(L,N,X)which holds iff X is the element occurring in position
N of the list L.

Answer:

occurs([X|_],1,X).
occurs([_|L],N,X) :- N > 1, M is N-1, occurs(L,M,X).

Exercise 5.10 (from http://www.cse.psu.edu/~catuscia/teaching/cg428/exercises/)
Define a predicate mymerge(L,K,M) which, given two ordered lists of integers L and K,
returns an ordered list M containing all the elements of L and K.

Answer:

%:- redefine_system_predicate(merge(_,_,_)).
mymerge([X|L],[Y|K],[X|M]) :- X < Y, mymerge(L,[Y|K],M).
mymerge([X|L],[Y|K],[Y|M]) :- X >= Y, mymerge([X|L],K,M).
mymerge(L,[],L).
mymerge([],K,K).

22 5 REASONING WITH HORN CLAUSES

using cut

%:- redefine_system_predicate(merge(_,_,_)).
mymerge([X|L],[Y|K],[X|M]) :- X < Y, !, mymerge(L,[Y|K],M).
mymerge([X|L],[Y|K],[Y|M]) :- X >= Y, !, mymerge([X|L],K,M).
mymerge(L,[],L) :- !.
mymerge([],K,K) :- !.

Exercise 5.11 (new)
Define a Prolog predicate invertList(List,Tsil), which is true if Tsil corresponds
to List with its elements reversed. You can generate either a recursive or iterative pro-
cess.

Answer:

Exercise 5.12 (new)
Define a Prolog predicate remove(Xs,X,Ys), which is true if Ys is the result of remo-
ving all occurrences of X from list Xs. You can generate either a recursive or iterative
process.

Answer:

/* remove(Xs,X,Ys) :- is true if Ys results from
removing all occurrences of X from list Xs. */

remove([X|Xs],X,Ys) :- remove(Xs,X,Ys).
remove([X|Xs],Z,[X|Ys]) :- X \= Z, remove(Xs,Z,Ys).
remove([],_,[]).

Exercise 5.13 (new)
Explain why the following program for minimum3 does not produce the expected results.

/*
minimum3(X,Y,Min) :- Min is the minimum of numbers X and Y.

*/
minimum3(X,Y,X) :- X =< Y, !.
minimum3(X,Y,Y).

Answer:

All that we have to do is to use the goal minimum3(2,5,5). This goal succeeds, even though 5 i
snot the minimum between its two other arguments. The problem is that this program was made
thinking that the third argument would be a variable, and in this case it would work. However,
when the third argument is known, we can get wrong results. The correct definition would be:

/*
minimum3a(X,Y,Min) :- Min is the minimum of numbers X and Y.

*/
minimum3a(X,Y,X) :- X =< Y, !.
minimum3a(X,Y,Y) :- X > Y, !.

23

Conclusion: it is not always possible to eliminate seemingly redundant tests, because we can get
wrong results if we call the program with arguments different from what was initially expected.

Exercise 5.14 (new)
Explain the problem with Prolog´s cut in the following program:

/*
member3(X,L) :- X is a member of L.

*/
member3(X,[X|_]) :- !.
member3(X,[_|Ys]) :- member3(X,Ys).

Note: think about what happens in two different situations: when we need to know if a
given element is a member of a list; and when we need to generate all the members of a
given list.

Answer:

The problem is that this is a red cut, that changes the meaning of the program. When we try to use
predicate member3 to find out the elements of a list, we will only get the first one. This happens
because the cut eliminates the possibility of backtracking and finding the other elements.

The following interaction illustrates some of the problems:

?- member3(2, [1,2,3]).
Yes
?- member3(X, [1,2,3]).
X = 1
?- member3(X, [1,2,3]), X=2.
No
?- X=2, member3(X, [1,2,3]).
X = 2
?-

The first goal works as expected.

The second goal only has one solution, corresponding to the list’s first element, when it should
have three solutions.

In the third goal the answer is No, when there is the solution X = 2.

In the fourth goal, we get that solution, because when we call member3 the X is already unified
with 2 and only in the recursive call to member3 will it unify with the second element of the list.

24 5 REASONING WITH HORN CLAUSES

25

6 Procedural Control of Reasoning

Exercise 6.1 (new)
Explain the difference between the following two Prolog rules for identifying a person´s
american cousins:

R1 americanCousin(X,Y) :- american(X), cousin(X,Y).

R2 americanCousin(X,Y) :- cousin(X,Y), american(X).

Answer:

Exercise 6.2 (new)
Explain why variables in Prolog should be unified as soon as possible.

Answer:

Exercise 6.3 (new)
Explain why the order of the clauses in a Prolog program can influence its efficiency.

Answer:

26 6 PROCEDURAL CONTROL OF REASONING

27

7 Rules in Production Systems

Exercise 7.1 (new)
A production system is a forward-chaining reasoning system that uses rules of a certain
form called production rules as its representation of general knowledge. Its basic operation
cycle consists of three steps (1-recognize; 2-resolve conflict; 3-act) that are repeated until
no more rules are applicable to the WM, at which point the system halts. Briefly explain
each of the three steps.

Answer:

In page 119.

1. Recognize — find out wich rules are applicable, that is, which rules’ antecedents are satis-
fied by the current WM.

2. Resolve conflict — from the rules determined in the previous step, choose the ones that
must be executed.

3. Act — change the WM, by executing the consequents of the rules selected in the second
step.

Exercise 7.2 (new)
Explain why conflict resolution is necessary in production systems. Name and explain
two different conflict resolution strategies used by these systems.

Answer:

Exercise 7.3 (new)
In production systems, production rules have an antecedent and a consequent. Describe
what can appear in each component of a production rule and give an example of one
production rule.

Answer:

Exercise 7.4 (new)
Production systems use forward-chaining or backward-chaining? Explain why.

Answer:

Exercise 7.5 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Explain the notions of rule matching, rule instance, conflict set, and conflict resolution
strategy in rule-based systems. Give two examples of common conflict resolution stra-
tegies. Illustrate your answers on the following example of rules and working memory
elements. State what the conflict set is for the current state of the working memory and
which rules will be fired first under each conflict resolution strategy. You can also refer
to the conflict set at the next cycle, after the selected rules are fired.

F1 animal(tiger)
F2 animal(cat)
F3 large(tiger)

28 7 RULES IN PRODUCTION SYSTEMS

F4 eatsMeat(tiger)
F5 eatsMeat(cat)
R1 ∀x[(animal(x) ∧ large(x) ∧ eatsMeat(x)) ⊃ dangerous(x)]
R2 ∀x[animal(x) ⊃ breathesOxygen(x)]
R3 ∀x[dangerous(x) ⊃ runAwayNow]

Answer:

In rule-based systems, patterns in the body of each rule are matched against working memory
elements. Each successful matching (a unification which makes the patterns identical with the
working memory elements) is a rule instance. The conflict set contains all rule instances appli-
cable for the current state of the working memory. The conflict resolution strategy is used to
determine which of the rule instances in the conflict set will actually be fired. Most conflict reso-
lution strategies pick a single rule instance based on specificity of the rules (which rule has a more
specific pattern in the body), the order in which rules appear in the program, the order in which
facts were added to working memory (for example, depth first where rule instances involving
more recent facts are preferred) etc.

In this example, the conflict set is: R1 with x/tiger (matching F1, F3, F4), R2 with x/tiger (mat-
ching F1) and x/cat (matching F2). Under the rule order and most specific rule first, the first rule
instance will be selected to assert dangerous(tiger) into the working memory. This adds a new
matching rule instance and the conflict set is R2 with x/tiger (matching F1) and x/cat (matching
F2), R3 with x/tiger. Now under the order of rules strategy the next fact to be fired will be an
instance of R2, for example and under more recent first strategy, the instance of R3, because it
matches the most recent fact.

Exercise 7.6 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Explain how decision tables can be used for knowledge elicitation and designing a rule-
based expert system.

Answer:

Decision tables can be used to structure the knowledge before producing a rule-based expert sys-
tem. First we need to decide on all conditions relevant for making a decision, and all possible
actions. A decision table consists of a list of possible relevant conditions, relevant actions, con-
dition alternatives (yes, no, and - for not relevant, for each condition) and action entries (which
action is to be taken if specified conditions hold). Each column in the table corresponds to a rule
(what to do if the pattern of conditions applies).

Exercise 7.7 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Suppose that all you have to work with in designing a rule-based expert system for recog-
nising spam email is the following set of correctly classified messages. Produce a decision
table based on this set of examples. Do not include irrelevant checks in the rules.

Message1 Properties: has an attachment, does not contain images, sender is in the recei-
ver’s address book, subject line contains "Prize". Decision: spam.

Message2 Properties: no attachments, contains images, sender is not in the receiver’s
address book, subject line contains "Goods". Decision: spam.

Message3 Properties: has an attachment, contains images, sender is in the receiver’s
address book, subject line contains "Prize". Decision: spam.

29

Message4 Properties: no attachments, does not contain images, sender is not in the re-
ceiver’s address book, subject line does not contain "Prize"or "Goods". Decision:
not spam.

Message5 Properties: has an attachment, does not contain images, sender is not in the
receiver’s address book, subject line contains "Prize". Decision: spam.

Message6 Properties: has no attachments, contains images, sender is in the receiver’s
address book, subject line contains "Goods". Decision: not spam.

Message7 Properties: has no attachments, does not contain images, sender is not in the
receiver’s address book, subject line contains "Goods". Decision: spam.

Message8 Properties: has no attachments, contains images, sender is not in the receiver’s
address book, subject line does not contain "Prize"or "Goods". Decision: not spam.

Answer:

We want to make as few tests as possible, but still correctly classify all the examples given in the
text.

1 2 3 4 5 6 7 8 1+3+5 2+7 4+8 6
Has attachment Y N Y N Y N N N Y - N N
Contains images N Y Y N N Y N Y - - - -
Sender in address book Y N Y N N Y N N - N - Y
Subject contains "Prize" Y N Y N Y N N N - - - -
Subject contains "Goods" N Y N N N Y Y N - Y N -
Spam X X X X X X X
Not spam X X X X X

30 7 RULES IN PRODUCTION SYSTEMS

31

8 Object-Oriented Representation

Exercise 8.1 (new)
Explain the difference between if-added and if-needed procedures in frames.

Answer:

Exercise 8.2 (new)
Explain the difference between frame systems and object oriented programming

Answer:

A procedural frame system shares the advantages of a conventional OOP system: Definition is
done primarily by specialization of more general classes, control is localized, methods can be
inherited, encapsulation of abstract procedures is possible, and so on. The main difference is that
frame systems tend to have a centralized, conventional control regime, whereas OOP systems
have objects acting as small, independent agents sending each other messages. Frame systems
tend to work in a cycle: Instantiate a frame and declare some slot fillers, inherit values from more
general frames, trigger appropriate forward-chaining procedures, and then, when quiescent, stop
and wait for the next input. OOP systems tend to be more decentralized and less patterned.

Exercise 8.3 (new)
Explain the similarities between frame systems and object oriented programming.

Answer:

Frame-based representation languages and OOP systems were developed concurrently, and share
many of the same intuitions and techniques. A procedural frame system shares the advantages
of a conventional OOP system: definition is done primarily by specialization of more general
classes, control is localized, methods can be inherited, encapsulation of abstract procedures is
possible, and so on.

Exercise 8.4 (new)
Consider the following information.

There are several types of planes: passenger, recreational and military planes.
Different types of planes are distinguished according to the people that they
transport: people in general, tourists or military personnel, respectively. Each
plane can have zero or more motors. Gliders are recreational planes without
motor, while passenger planes generally have two motors. The total weight
of a plane can be estimated by summing the plane´s weight to the weight of
its passengers and its cargo. “Hawk” is a recreational plane and “Enolagay”
is a military plane.

1. Represent the hierarchy implicit in this information.

2. Design a set of frames and slots to represent this information.

3. Write in English pseudo-code the if-added or if-needed procedures that would ap-
pear in your representation.

32 8 OBJECT-ORIENTED REPRESENTATION

Answer:

1.
Plane

PassengerPlane RecreationalPlane MilitaryPlane

Glider

hawk enolagay

Person

Tourist Military

2. (Plane
<:PassengerList List of Person>
<:NumMotors PositiveInteger>
<:TotalWeight PROCEDURE>
<:OwnWeight PositiveInteger>
<:CargoWeight PositiveInteger>)

(PassengerPlane
<:IS-A Plane>
<:NumMotors 2>)

(RecreationalPlane
<:IS-A Plane>
<:PassengerList List of Tourist>)

(MilitaryPlane
<:IS-A Plane>
<:PassengerList List of Military>)

(Glider
<:IS-A RecreationalPlane>
<:NumMotors 0>)

(hawk
<:INSTANCE-OF RecreationalPlane>)

(enolagay
<:INSTANCE-OF MilitaryPlane>)

(Person
<:Weight PositiveInteger>)

(Tourist
<:IS-A Person>)

(Military
<:IS-A Person>)

3. The only procedure is an if-needed procedure that is called when the plane’s total weight
needs to be determined. This procedure will iterate over the plane’s passenger list and sum
everyone’s weight and then sum the plane’s own weight and the plane’s cargo weight to
get the total weight.

33

Exercise 8.5 (new)
Consider the following information.

We need to represent information about several kinds of geometric shapes,
namely how many sides they have, their color, area and perimeter. We want
to represent circles, rectangles and right triangles. For each of these types of
geometric shapes we want to be able to calculate its area and its perimeter. R1
is a blue rectangle that measures 10cm by 5cm.

1. Represent the hierarchy implicit in this information.

2. Design a set of frames and slots to represent this information.

3. Write in English pseudo-code the if-added or if-needed procedures that would ap-
pear in your representation.

Answer:

1.
GeometricShape Color

Circle Rectangle RightTriangle

r1 blue

2. (GeometricShape
<:NumSides PositiveInteger>
<:Color Color>
<:Area PositiveReal>
<:Perimeter PositiveReal>)

(Circle
<:IS-A GeometricShape>
<:NumSides 1> ;;; would also accept 0; INFINITY; UNDEFINED
<:Area [IF-NEEDED ProcAreaCircle]>
<:Perimeter [IF-NEEDED ProcPerimeterCircle]>
<:Radius PositiveReal>)

(Rectangle
<:IS-A GeometricShape>
<:NumSides 4>
<:Area [IF-NEEDED ProcAreaRectangle]>
<:Perimeter [IF-NEEDED ProcPerimeterRectangle]>
<:Length PositiveReal>
<:Width PositiveReal>)

(RightTriangle
<:IS-A GeometricShape>
<:NumSides 3>
<:Area [IF-NEEDED ProcAreaRightTriangle]>
<:Perimeter [IF-NEEDED ProcPerimeterRightTriangle]>
<:Base PositiveReal>
<:Height PositiveReal>)

34 8 OBJECT-ORIENTED REPRESENTATION

(r1
<:INSTANCE-OF Rectangle>
<:Color blue>
<:Length 10>
<:Width 5>)

3. All the procedures are if-needed procedures that are called when the figure’s area and
perimeter need to be determined.

ProcAreaCircle
return 3,14 * SELF:Radius * SELF:Radius

ProcPerimeterCircle
return 2 * 3,14 * SELF:Radius

ProcAreaRectangle
return SELF:Length * SELF:Width

ProcPerimeterRectangle
return 2 * (SELF:Length + SELF:Width)

ProcAreaRightTriangle
return (SELF:Base * SELF:Height) / 2

ProcPerimeterRightTriangle
return SELF:Base + SELF:Height + sqrt(sqr(SELF:Base) + sqr(SELF:Height))

Exercise 8.6 (new)
We are interested in representing information about several kinds of people, namely their
hair color, their body mass index (BMI), and the interpretation of this index. Someone’s
BMI is calculated as the person’s weight in kilos divided by the square of the person’s
height in meters. The interpretation of BMI is as follows: BMI less than 18,5 — un-
derweight; BMI between 18,5 and 25 — normal weight; BMI between 25 and 29,9 —
overweight; BMI over 30 — obesity. Jack is a person with brown hair.

1. Represent the hierarchy implicit in this information.

2. Design a set of frames and slots to represent this information.

3. Invent the values that are needed to calculate and interpret Jack’s BMI.

4. Write in English pseudo-code the if-added or if-needed procedures that would ap-
pear in your representation.

Answer:

Exercise 8.7 (new)
We are interested in representing information about several types of insurances, that are
differentiated according to the type of object that is insured. In particular, we are inte-
rested in representing insurance for the filling of the house, insurance for the walls of
the house and auto insurance. There are also multi-risk home insurances, which include
both insurance for the filling of the house and insurance for the walls of the house. The
prize for each type of insurance is calculated as a percentage of the insured value: 0.5%
for the walls, 1% for the filling and 2% for auto insurance. GingerbreadHouse is a house
and has a multi-risk insurance. Herbie is an automobile.

35

1. Represent the hierarchy implicit in this information.

2. Design a set of frames and slots to represent this information.

3. Write in English pseudo-code the if-added or if-needed procedures that would ap-
pear in your representation.

4. Invent the values that are needed to calculate the value of the insurance for Ginger-
breadHouse, represent them, and calculate the value of the insurance.

Answer:

Exercise 8.8 (Ch 8, Ex 1)
Consider a possible frame-based application for a classroom scheduler.
We want to build a program that helps schedule rooms for classes of various sizes at
a university, using the sort of frame technology (frames slots and attached procedures)
discussed in the text. Slots of frames might be used to record when and where a class is
to be held, the capacity of a room, and so on, and if-added and other procedures might
be used to encode constraints as well as to fill in implied values when the KB is updated.
In this problem, we want to consider updating the KB in several ways: (1) asserting that
a class of a given size is to be held in a given room at a given time; the system would
either go ahead and add this to its schedule or alert the user that it was not possible to do
so; (2) asserting that a class of a given size is to be held at a given time, with the system
providing a suitable room (if one is available) when queried; (3) asserting that a class of
a given size is desired, with the system providing a time and a place when queried.

1. Design a set of frames and slots to represent the schedule and any ancillary infor-
mation needed by the assistant.

2. For all slots of all frames, write in English pseudo-code the if-added or if-needed
procedures that would appear there. Annotate these procedures with comments
explaining why they are there (e.g., what constraints they are enforcing).

3. Briefly explain how your system would work (what procedures would fire and
why they do) on concrete examples of your choosing, illustrating each of the three
situations mentioned in the description of the application.

Answer:

36 8 OBJECT-ORIENTED REPRESENTATION

37

9 Structured Descriptions

Exercise 9.1 (new)
What is the point of description logics (DL)? Why don’t knowledge representation pro-
fessionals use first-order logic for everything?

Answer:

The main reason for using resticted ontology languages is that restriction in expressive power
makes reasoning in them much more efficient than in first order logic. Another reason is that
hierarchies of concepts, and entity-relationship diagrams are familiar to many users and are con-
sidered more intuitive.

Exercise 9.2 (new)
Explain how concept classification can be considered as a form of reasoning in description
logics.

Answer:

Exercise 9.3 (new)
Explain in which situations a formula a→ b is true in description logics.

Answer:

Exercise 9.4 (new)
Explique quando é que uma fórmula do tipo d1 v d2 tem o valor verdadeiro nas lógicas
descritivas.

Answer:

Exercise 9.5 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Assume that you have an atomic concept Woman, roles Child and Employer, and a
constant ist for Instituto Superior Técnico. Define the following concepts:

1. Extra-busy is a working mother employed by Instituto Superior Técnico.

2. Someone all of whose children only have female children themselves (that is a per-
son who only has granddaughters, if he or she has any grandchildren).

3. Someone who has children, and all of whose children have children.

Answer:

1. ExtraBusy .
= [AND Woman [EXISTS 1 :Child] [FILLS :Employer ist]]

2. [ALL :Child Woman] describes someone all of whose children are female, and we want
to say that someone’s children are described by this concept, so we say
[ALL :Child [ALL :Child Woman]].

38 9 STRUCTURED DESCRIPTIONS

3. To say that someone has children we can use [EXISTS 1 :Child] and to describe some-
one all of whose children have children we can use [ALL :Child [EXISTS 1 :Child]].
Since we want the concept to satisfy both properties, we say
[AND [EXISTS 1 :Child] [ALL :Child [EXISTS 1 :Child]]].

Exercise 9.6 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Answer the following questions:

1. Do d1 v d2 and d2 v d3 entail d1 v d3?

2. Do c→ d1 and d2 v d1 entail c→ d2?

3. Do c→ d1 and d1 v d2 entail c→ d2?

Answer:

1. Yes: if d1 v d2 and d2 v d3 are true it means that I(d1) ⊆ I(d2) and I(d2) ⊆ I(d3) so
I(d1) ⊆ I(d3), and the latter means that d1 v d3 is true.

2. No: Consider I such that I(c) ∈ I(d1) and I(d2) is empty. Then the first two sentences are
true but c /∈ I(d2) so c→ d2 is false.

3. Yes: If the first two sentences are true, then I(c) ∈ I(d1) and I(d1) ⊆ I(d2) so it has to hold
that I(c) ∈ I(d2) which means c→ d2 is true.

Exercise 9.7 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Consider a description logic with the following definition of a concept (note that it is
slightly different from the one in the textbook, namely the first concept constructor is
new and the forth concept constructor is different from [EXISTS n r]):

• > is a special atomic concept which describes any object (it is a property which is
trivially true for everything).

• An atomic concept is a concept.

• If r is a role and b is a concept, then [ALL r b] is a concept (describing objects all
of whose r-successors are described by b).

• If r is a role and b is a concept, then [EXISTS r b] is a concept (describing objects
which have at least one r-successor which is described by b).

• If r is a role and c is a constant, then [FILLS r c] is a concept (describing objects
which have an r-successor denoted by c).

• If b1, . . . , bn are concepts, [AND b1 ...bn] is a concept (describing objects which
are described by all of b1, . . . , bn).

and the following definition of a sentence:

• If b1 and b2 are concepts then b1 v b2 is a sentence (all b1s are b2s).

• If b1 and b2 are concepts then b1
.
= b2 is a sentence (b1 is equivalent to b2).

39

• If c is a constant and b a concept then c→ b is a sentence (the individual denoted by
c satisfies the description expressed by b).

1. Given the atomic concepts Female, Male, Person roles :Child, :Sibling and
constant alice, define in the description logic above the following concepts:

(a) “Mother of Alice” (someone female whose child is Alice).

(b) “Parent” (someone who has a child).

(c) “Uncle” (someone male who has a sibling who has a child).

2. Using the same atomic concepts, translate the following sentences into description
logic:

(a) Every grandparent is a parent.

(b) Alice is a grandmother.

Answer:

1. (a) [AND Female [FILLS :Child alice]]

(b) [EXISTS :Child Person]

(c) [AND Male [EXISTS :Sibling [EXISTS :Child Person]]]

2. (a) [EXISTS :Child [EXISTS :Child Person]] v [EXISTS :Child Person]

(b) alice → [AND Female [EXISTS :Child [EXISTS :Child Person]]]

Exercise 9.8 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Recall the description logic DL given in the textbook.
Concepts:

• An atomic concept is a concept.

• If r is a role and b is a concept, then [ALL r b] is a concept (e.g. [ALL :Child
Girl] describes someone all of whose children are girls).

• If r is a role and n is a positive integer, then [EXISTS n r] is a concept (e.g.
[EXISTS 2 :Child] describes someone who has at least 2 children).

• If r is a role and c is a constant, then [FILLS r c] is a concept (e.g. [FILLS
:Child john] describes someone whose child is John).

• If b1, . . . , bn are concepts, [AND b1 ...bn] is a concept.

Sentences:

• If b1 and b2 are concepts then b1 v b2 is a sentence (all b1s are b2s).

• If b1 and b2 are concepts then b1
.
= b2 is a sentence (b1 is equivalent to b2).

• If c is a constant and b a concept then c→ b is a sentence (the individual denoted by
c satisfies the description expressed by b).

40 9 STRUCTURED DESCRIPTIONS

1. Express the following concepts and sentences in DL using constants john, krr,
roles :Module and :Supervision and atomic concepts Academic, Lecturer,
Compulsory:

C1 Concept of an academic who has some project students (supervises the stu-
dents).

C2 Concept of an academic who teaches at least two modules.

C3 Concept of an academic who teaches only compulsory modules.

C4 Concept of someone who teaches KRR.

S1 A lecturer is an academic who has at least 8 project students and teaches at least
2 modules.

S2 John teaches at least 3 modules and they are all compulsory.

2. At the moment the logic does not contain concept negation NOT. It also cannot say
that there exists some individual connected by a role which is in a concept b (na-
mely, we have [ALL r b] but no [EXISTS r b]). If we add concept negation
NOT, with the obvious meaning that [NOT b] is a concept containing all individu-
als which are not in b, explain how we can then define [EXISTS r b].

Answer:

1. C1 [AND Academic [EXISTS 1 :Supervision]]

C2 [AND Academic [EXISTS 2 :Module]]

C3 [AND Academic [ALL :Module Compulsory]]

C4 [FILLS :Module krr]

S1 Lecturer
.
= [AND Academic [EXISTS 8 :Supervision] [EXISTS 2 :Module]]

S2 john → [AND [EXISTS 3 :Module] [ALL :Module Compulsory]]

2. [EXISTS r b] = [NOT [ALL r [NOT b]]]

Exercise 9.9 (new)
Express the following concepts and sentences in DL using the constants, roles and atomic
concepts that you find the most useful.

Computers have at least one input device and one output device, which are
input devices and output devices, respectively. Keyboards and mice are diffe-
rent types of input devices. Screens and columns are different types of output
devices. C1 is a computer whose keyboard is K1.

What can be inferred about K1?

Answer:

Computer v
[AND [ALL :InputDev InputDevice]

[EXISTS 1 :InputDev]
[ALL :OutputDev OutputDevice]
[EXISTS 1 :OutputDev]]

41

Keyboard v InputDevice

Mouse v InputDevice

Screen v OutputDevice

Column v OutputDevice

c1 → [AND Computer [FILLS :InputDev k1]]

k1 → Keyboard

About K1 we know that it is a keyboard and that it is C1’s input device. It is possible to infer that
it is an input device.

Exercise 9.10 (new)
Express the following concepts and sentences in DL using the constants, roles and atomic
concepts that you find the most useful.

There are several types of drinks: water, alcoholic drinks and fruit drinks.
Drinks are described by their ingredients, which are edible stuff. Alcoholic
drinks are also described by their alcohol contents, which is an integer. W1
is a wine whose alcohol contents is 12. F2 is a fruit drink containing water,
pineapple juice and coconut juice.

What can be inferred about F2?

Answer:

Drink v [ALL :Ingredients EdibleStuff]

Water v Drink

AlcoholicDrink v [AND Drink [ALL :AlcoholContents Integer]]

FruitDrink v Drink

Wine v AlcoholicDrink

w1 → [AND Wine [FILLS :AlcoholContents 12]]

f2 →
[AND FruitDrink

[FILLS :Ingredients PineappleJuice]
[FILLS :Ingredients Water]
[FILLS :Ingredients CoconutJuice]]

PineappleJuice v Drink

CoconutJuice v Drink

Drink v EdibleStuff

42 9 STRUCTURED DESCRIPTIONS

About F2 we can infer that it is a drink and that it is edible stuff.

Exercise 9.11 (new)
Express the following concepts and sentences in DL using the constants, roles and atomic
concepts that you find the most useful. Start by drawing the hierarchy that is implicit in
your representation. In the end, indicate what can be inferred from the information that
you represented.

We want to represent information about people and the relationships between
them. Mothers are women with children. Uncles are men whose siblings have
children. Grandparents are people whose children have children. Mary is the
mother of Rita. Nick is Mary’s brother. Joan is the mother of Mary and Nick.

Answer:

Despite the fact that “Parent” does not appear in the text, the concept of someone with children
does, so this concept will also be represented.

Person

Woman Parent Man

Mother Grandparent Uncle

rita mary joan nick

Woman v Person

Parent
.
=

[AND Person
[EXISTS 1 :child]
[ALL :child Person]]

Man v Person

Mother
.
= [AND Woman Parent]

Uncle
.
=

[AND Man
[EXISTS 1 :siblingWithChild]
[ALL :siblingWithChild Parent]]

Grandparent
.
=

[AND Parent
[EXISTS 1 :childWithChild]
[ALL :childWithChild Parent]]

43

mary → [AND Mother [FILLS :child rita]]

rita → Woman

nick → [AND Man [FILLS :siblingWithChild mary]]

joan → [AND Mother [FILLS :child mary] [FILLS :child nick]]

We can infer that:

• Mary is a Woman, a Parent and a Person.

• Rita is a Person.

• Nick is a Person and an Uncle of Rita.

• Joan is a Grandparent of Rita. She is also a Woman, a Parent and a Person.

Exercise 9.12 (new)
Express the following concepts and sentences in DL using the constants, roles and atomic
concepts that you find the most useful. Explicitly state what can be inferred from this
information.

Trees have a trunk and several branches and roots (which are trunks, branches
and roots, respectively). Fruit trees are trees that grow fruits. Orange trees are
trees that grow oranges. O1 is an orange tree with trunk T1 that grew orange
O2.

Answer:

Tree v
[AND [ALL :trunk Trunk]

[EXISTS 1 :trunk]
[ALL :branches Branch]
[ALL :root Root]
[EXISTS 1 :root]]

Fruittree v
[AND Tree

[ALL :grows Fruit]]

Orange v Fruit

OrangeTree v
[AND Fruittree

[ALL :grows Orange]]

O1 →
[AND Fruittree

[FILLS :trunk T1]
[FILLS :grows O2]]

T1 → Trunk

O2 → Orange

44 9 STRUCTURED DESCRIPTIONS

We can infer that O1 is a Fruittree and a Tree and that O2 is a Fruit.

Exercise 9.13 (new)
Express the following concepts and sentences in the description logic presented in the
book, using the constants, roles and concepts that you find the most useful. Start by
drawing the hierarchy implicit in this information. In the end, explicitly state what can
be inferred from your representation.

We need to represent information about electronic devices (ED) and its use.
Tablets are EDs with a touch-sensitive screen. Computers are EDs with at
least one processor and a (non-touch-sensitive) screen. “c1”is a computer and
“t1” is a tablet.

Answer:

Exercise 9.14 (new)
Express the following concepts and sentences in the description logic presented in the
book, using the constants, roles and concepts that you find the most useful. Start by
drawing the hierarchy implicit in this information. In the end, explicitly state what can
be inferred from your representation.

It is intended to represent information about logic gates: AND, OR and NOT
gates. Logic gates have at least one input and exactly one output, all of which
are logical values. The possible logical values are TRUE and FALSE. AND
gates have two inputs and one output. A1 is an AND gate with inputs TRUE
and FALSE.

Answer:

45

10 Inheritance

Exercise 10.1 (new)
Explain the difference between strict inheritance and defeasible inheritance. Explain the
main problem that can arise when using defeasible inheritance.

Answer:

Exercise 10.2 (new)
Explain why the concept of inheritance is useful. Explain the difference between single
and multiple inheritance and state a problem that can arise when using multiple inheri-
tance.

Answer:

Exercise 10.3 (new)
Name and explain the two initial strategies for defeasible inheritance discussed in the
book.

Answer:

The shortest path heuristic says that we should prefer conclusions resulting from shorter paths in
the network. The inferential distance says that we should prefer conclusions resulting from nodes
that are closer in the inheritance network. A node a is considered closer to node b than to node c
according to inferential distance if and only if there is a path from a to c through b, regardless of
the actual length of any paths from a to b and to c.

Exercise 10.4 (new)
Give an example of an inheritance network where the inheritance mechanisms studied
in chapter 10 of the book can find the desired extension but default logic cannot. Explain
why this happens.

Answer:

Exercise 10.5 (new)
Under what circumstances do a credulous reasoner and a skeptical reasoner believe in
exactly the same conclusions?

Answer:

Whenever there is a single preferred extension.

Exercise 10.6 (Ch 10, Ex 1)
Consider the following collection of assertions:

George is a Marine.

George is a chaplain.

A Marine is typically a beer drinker.

46 10 INHERITANCE

A chaplain is typically not a beer drinker.

A beer drinker is typically overweight.

A Marine is typically not overweight.

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that a skeptical reaso-
ner would not.

Answer:

1.
Overweight

BeerDrinker

Marine Chaplain

George

—
—

2. A credulous extension of Γ wrt node a is a maximal unambiguous a-connected subhierar-
chy of Γ wrt a.

Overweight Overweight Overweight

BeerDrinker BeerDrinker BeerDrinker

Marine Chaplain Marine Chaplain Marine Chaplain

George George George

(1) (2) (3)

—
—

—

3. A credulous extension is a preferred extension if there is no other extension that is preferred
to it. One credulous extension is preferred over another if it has the “most specific” edges.
In this case, (1) is preferred over (2) because the edge BeerDrinker ·Overweight is in (2) and
not in (1). Moreover, (3) is preferred over no other and no other is preferred over it. So, (1)
and (3) are the preferred extensions.

4. Remember the three types of reasoning:

• Credulous reasoning: choose a preferred extension and believe all the conclusions
supported.

• Skeptical reasoning: believe the conclusions from any path that is supported by all
preferred extensions.

47

• Ideally skeptical reasoning: believe the conclusions that are supported by all preferred
extensions. Note: ideally skeptical reasoning cannot be computed in a path-based
way (conclusions may be supported by different paths in each extension).

In this case, a credulous reasoner would believe in BeerDrinker (if it chose (1)), but a skep-
tical reasoner would not, because it is in (1) but not in (3).

Exercise 10.7 (new)
Consider the following collection of assertions:

a is a B.

a is a C.

Bs are typically Es.

Cs are typically not Es.

Cs are typically Ds.

Ds are typically Es.

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that a skeptical reaso-
ner would not.

Answer:

1.
E

D

B C

a

—

2.
E E

D D

B C B C

a a

(1) (2)

—

48 10 INHERITANCE

3. In this case no extension is preferred over any other. So, (1) and (2) are the preferred exten-
sions.

4. In this case, a credulous reasoner would believe in E (if it chose (1)), but a skeptical reasoner
would not, because it is in (1) but not in (2).

Exercise 10.8 (Ch 10, Ex 1)
Consider the following collection of assertions:

Dick is a Quaker.

Dick is a Republican.

Quakers are typically pacifists.

Republicans are typically not pacifists.

Republicans are typically promilitary.

Pacifists are typically not promilitary.

Promilitary (people) are typically politically active.

Pacifists are typically politically active.

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that a skeptical reaso-
ner would not.

Answer:

1.
PoliticallyActive

Promilitary

Pacifist

Quaker Republican

Dick

—

—

49

2. There are two conflicts, so there are at most 22 extensions

PA PA PA

PM PM PM

P P P

Q R Q R Q R

D D D

(1) (2) (3)

—

—

3. In this case, (3) is preferred over (1) because the edge R · PM is in (1) and not in (3). There
is no preference between (1) and (2). So, (2) and (3) are the preferred extensions.

4. In this case, a credulous reasoner would believe in Not Pacifist (if it chose (2)) or Pacifist (if
it chose (3)), but a skeptical reasoner would not.

Exercise 10.9 (new)
Consider the following collection of assertions:

a is a C.

a is a D.

b is a E.

Cs are typically Es.

Ds are typically not Es.

Es are typically not F s.

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that a skeptical reaso-
ner would not.

Answer:

50 10 INHERITANCE

51

11 Defaults

Exercise 11.1 (new)
Explain the need for default reasoning. Use a suitable example.

Answer:

Exercise 11.2 (new)
Explain the difference between a generic rule and a universal rule. Give a suitable exam-
ple for each of them.

Answer:

Exercise 11.3 (new)
Explain what the closed world assumption is and why it can be considered as a non-
monotonic reasoning mechanism.

Answer:

In general terms, the assumption here, called the closed-world assumption (CWA), is the fol-
lowing: Unless an atomic sentence is known to be true, it can be assumed to be false. Note that
expressed this way, the CWA can be seen to involve a form of default reasoning. A sentence
assumed to be false could later be determined in fact to be true.

Exercise 11.4 (new)
Say if each of the following default rules makes sense, from a representational point of
view. Justify your answer.

1. A(x) :B(x)∧C(x)
B(x)

2. A(x) :B(x)
A(x)

3. A(x) :B(x)
B(x)

4. A(x) :B(x)
C(x)

5. :¬A(x)
A(x)

6. :A(x)
A(x)

7. A(x) :
B(x)

Answer:

O objectivo deste exercício é analizar a forma das regras de omissão que escrevermos quando
estivermos a representar conhecimento, para nos dar a capacidade de vermos se elas fazem ou
não sentido. Do ponto de vista da LOR, todas elas podem ser usadas, à excepção da última (como
a justificação é vazia, não está sintacticamente correcta).

52 11 DEFAULTS

1. A(x) :B(x)
B(x) — Esta é uma regra de omissão normal. Estas são as regras de omissão mais usa-

das, para tirar partido das propriedades das teorias de omissão normais, como por exemplo
a existência de pelo menos uma extensão.

2. A(x) :B(x)∧C(x)
B(x) — Esta é uma regra de omissão semi-normal. Estas regras de omissão tam-

bém são muito usadas, apesar de as teorias de omissão que usam regras com esta forma já
não terem garantia de extensão.

3. A(x) :B(x)
C(x) — As regras com esta forma não são tão usadas como as regras com as duas

formas anteriores, mas podem perfeitamente fazer sentido, do ponto de vista da Represen-
tação do Conhecimento.

4. A(x) :B(x)
A(x) — Não faz sentido: se temos que saber A(x) para podermos aplicar a regra, não

adianta nada aplicá-la para voltarmos a concluir A(x).

5. :¬A(x)
A(x) — Não faz sentido: se for consistente assumir ¬A(x), não faz sentido concluir

A(x), até porque ¬A(x) pode já estar na base de conhecimento.

6. :A(x)
A(x) — Faz sentido. É uma regra de omissão normal, mas em que a pré-condição é

vazia.

7. A(x) :
B(x) — Não faz sentido: uma vez que a justificação da regra é vazia, deveríamos ter

usado uma regra universal ∀(x)[A(x) ⊃ B(x)]. Esta regra é a única que não está sintactica-
mente correcta do ponto de vista da LOR.

Exercise 11.5 (Ch 11, Ex 1)
Although the inheritance networks of Chapter 10 are in a sense much weaker than the
other formalisms considered in this chapter for default reasoning, they use default asser-
tions more fully. Consider the following assertions:

Canadians are typically not francophones.

All Quebecois are Canadians.

Quebecois are typically francophones.

Robert is a Quebecois.

Here is a case where it seems plausible to conclude by default that Robert is a fran-
cophone.

1. Represent these assertions in an inheritance network (treating the second assertion
as defeasible), and argue that it unambiguously supports the conclusion that Robert
is a francophone.

2. Represent these assertions in first-order logic using two abnormality predicates,
one for Canadians and one for Quebecois, and argue that, as it stands, minimizing
abnormality would not be sufficient to conclude that Robert is a francophone.

3. Show that minimizing abnormality would work if we add the assertion
“All Quebecois are abnormal Canadians”,
but will not work if we only add
“Quebecois are typically abnormal Canadians”.

53

4. Repeat the exercise in default logic. Represent the assertions as two facts and two
normal default rules, and argue that the result has two extensions. Eliminate the
ambiguity using a non-normal default rule.

5. Write a variable-free version of the assertions in autoepistemic logic, and show that
the procedure described in the text generates two stable expansions. How can the
unwanted expansion be eliminated?

Answer:

1.
Francophone Francophone Francophone

Canadian Canadian Canadian

Quebequois Possible extensions Quebequois Quebequois

Robert Robert Robert

(1) (2)

— —

This inheritance network supports the conclusion that Robert is a francophone because he
is a Quebequois and Quebequois are francophones. This rule is more specific than the one
that states that Canadians are not francophones, so it takes precedence over it, which is
why extension (1) is preferred over extension (2).

2. In first-order logic we have:

S1 ∀x[(Canadian(x) ∧ ¬Ab1(x)) ⊃ ¬Francophone(x)]

S2 ∀x[Quebequois(x) ⊃ Canadian(x)]

S3 ∀x[(Quebequois(x) ∧ ¬Ab2(x)) ⊃ Francophone(x)]

S4 Quebequois(robert)

The goal here is to minimize abnormality.
Because there are two abnormality predicates and one constant, we have four possibilities
of extensions:

• PE1 |= {¬Ab1(robert),¬Ab2(robert)} this one would generate an inconsistent exten-
sion, because it would also have to satisfy {Francophone(robert),¬Francophone(robert)}.
So this is NOT an extension.

• PE2 |= {¬Ab1(robert), Ab2(robert)} in this case, PE2 |= {¬Francophone(robert)}
and everything is consistent. So, this IS one possible extension.

• PE3 |= {Ab1(robert),¬Ab2(robert)} in this case, PE3 |= {Francophone(robert)} and
everything is consistent. So, this IS one possible extension.

• PE4 |= {Ab1(robert), Ab2(robert)} this is NOT an extension because it is not minimal
regarding the abnormality predicates, because it contains PE2 (it also contains PE3,
but it only needs to contain one other extension not to be minimal).

So, here we have two extensions and no way of preferring one over the other.

54 11 DEFAULTS

3. All Quebecois are abnormal Canadians.

S5 ∀x[Quebequois(x) ⊃ Ab1(x)]

Quebecois are typically abnormal Canadians.

S6 ∀x[(Quebequois(x) ∧ ¬Ab3(x)) ⊃ Ab1(x)]

Using S5, we have Ab1(robert), for sure, so we cannot get ¬Francophone(robert). The only
possible extension would be PE3.
Using S6, we have two possible extensions, one containing
{¬Ab1(robert), Ab2(robert), Ab3(robert),¬Francophone(robert)} and another containing
{Ab1(robert),¬Ab2(robert),¬Ab3(robert), F rancophone(robert)}.
We have no way of preferring one extension over the other.
Once more, we cannot have all ¬Abi(robert) in the same extension, because it would be
inconsistent. All the other combinations would not be minimal or would be inconsistent.

4. In default logic, we have:

D1 Canadian(x) :¬Francophone(x)
¬Francophone(x)

S2 ∀x[Quebequois(x) ⊃ Canadian(x)]

D3 Quebequois(x) :Francophone(x)
Francophone(x)

S4 Quebequois(robert)

In default logic extensions are constructed by adding the conclusions of all the default rules
that are applicable. Extensions must be consistent and all conclusions must be supported.
In this case, we have four possibilities of extensions:

• PE1 |= {S2, S4} in this case there are default rules that could have been applied and
were not. So this is NOT an extension.

• PE2 |= {S2, S4, F rancophone(robert)} this is consistent and all the applicable default
rules were applied. So, this IS one possible extension.

• PE3 |= {S2, S4,¬Francophone(robert)} this is consistent and all the applicable de-
fault rules were applied. So, this IS one possible extension.

• PE4 |= {S2, S4, F rancophone(robert),¬Francophone(robert)} this is NOT an exten-
sion because it is not consistent.

So we have two extensions, one containing {Francophone(robert)} and the other contai-
ning {¬Francophone(robert)}, corresponding to the application of D3 or D1 respectively.
A way to eliminate the undesired extension is to replace D1 with a non-normal default rule:

D1nn Canadian(x) :¬Quebequois(x)∧¬Francophone(x)
¬Francophone(x)

This rule is not applicable to robert because we have Quebequois(robert), so the only exten-
sion left is the one containing {Francophone(robert)}, as desired.

5. In autoepistemic logic we have:

A1 ∀x[(Canadian(x) ∧ ¬BFrancophone(x)) ⊃ ¬Francophone(x)]

S2 ∀x[Quebequois(x) ⊃ Canadian(x)]

A3 ∀x[(Quebequois(x) ∧ ¬B¬Francophone(x)) ⊃ Francophone(x)]

S4 Quebequois(robert)

Variable-free version:

A1f (Canadian(robert) ∧ ¬BFrancophone(robert)) ⊃ ¬Francophone(robert)
S2f Quebequois(robert) ⊃ Canadian(robert)

A3f (Quebequois(robert) ∧ ¬B¬Francophone(robert)) ⊃ Francophone(robert)

55

S4f Quebequois(robert)

To find the stable expansions, replace each Bα by TRUE or by FALSE, and for each com-
bination determine if the expansion satisfies positive and negative introspection (that is, if
Bα was replaced by TRUE KB0 |= α, if Bα was replaced by FALSE KB0 2 α). In this case,
there are two possibilities:

• BFrancophone(robert) is true. In this case, the expansion will contain {Francophone(robert)}
and will satisfy positive and negative introspection.

• BFrancophone(robert) is false. In this case, the expansion will contain
{¬Francophone(robert),B¬Francophone(robert)} and will also satisfy positive and
negative introspection.

This theory generates two stable expansions, one containing {Francophone(robert)} and
the other containing {¬Francophone(robert)}.
It is possible to eliminate the undesirable expansion if we replace A1f by

A1f2 (Canadian(robert)∧¬BQuebequois(robert)∧¬BFrancophone(robert)) ⊃ ¬Francophone(robert)

Exercise 11.6 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Consider the following knowledge base:

KB = {NorthOf(coimbra, faro),
NorthOf(chaves, porto),
NorthOf(coimbra, lisboa),
NorthOf(chaves, coimbra),
∀x∀y∀z[(NorthOf(x, y) ∧NorthOf(y, z)) ⊃ NorthOf(x, z)]}

1. Does it hold that KB |=CWA NorthOf(chaves, faro)? Explain why.

2. Does it hold that KB |=CWA ¬NorthOf(chaves, faro)? Explain why.

3. Does it hold that KB |=CWA NorthOf(porto, faro)? Explain why.

4. Does it hold that KB |=CWA ¬NorthOf(porto, faro)? Explain why.

Answer:

Chaves

Porto

Coimbra

Lisboa

Faro

1. KB |=CWA NorthOf(chaves, faro) becauseNorthOf(chaves, coimbra),NorthOf(coimbra, faro)
and ∀x∀y∀z[(NorthOf(x, y)∧NorthOf(y, z)) ⊃ NorthOf(x, z)] classically entailNorthOf(chaves, faro).

2. KB 2CWA ¬NorthOf(chaves, faro) because there is an interpretation satisfyingKB+ and
NorthOf(chaves, faro) (in fact all interpretations that satisfyKB+ also satisfyNorthOf(chaves, faro),
because this follows from KB in the classical sense).

56 11 DEFAULTS

3. KB 2CWA NorthOf(porto, faro) because NorthOf(porto, faro) does not follow classi-
cally fromKB, so its negation is inKB+ and sinceKB+ is consistent,NorthOf(porto, faro)
is not entailed by it.

4. KB |=CWA ¬NorthOf(porto, faro) because NorthOf(porto, faro) does not follow classi-
cally from KB, so its negation is in KB+.

Exercise 11.7 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
For the following KB:

KB = {SouthOf(milan, paris),
SouthOf(milan, london),
SouthOf(milan,moscow),
paris 6= london,
london 6= moscow,
paris 6= moscow,
¬WarmerThan(milan, paris) ∨ ¬WarmerThan(milan, london),
∀x[(SouthOf(milan, x) ∧ ¬Ab(x)) ⊃WarmerThan(milan, x)]}

state whether the following sentences are minimally entailed, and explain why:

1. WarmerThan(milan,moscow)

2. WarmerThan(milan, london)

Answer:

In circumscription the goal is to minimize abnormality. Here, we have one Ab predicate and three
constants, so there are eight possible combinations of AB predicate applied to each constant. The
possible minimal models will be:

• PMM1 |= {¬Ab(paris),¬Ab(london),¬Ab(moscow)} this is NOT an acceptable minimal
model, because it is inconsistent, because it also satisfies
{WarmerThan(milan, paris),¬WarmerThan(milan, paris),
WarmerThan(milan, london),¬WarmerThan(milan, london)}.

• PMM2 |= {Ab(paris),¬Ab(london),¬Ab(moscow)} this IS an acceptable minimal model,
because it is consistent, and it only satisfies one Ab predicate.

• PMM3 |= {¬Ab(paris), Ab(london),¬Ab(moscow)} this IS an acceptable minimal model,
because it is consistent, and it only satisfies one Ab predicate.

• PMM4 |= {¬Ab(paris),¬Ab(london), Ab(moscow)} this is NOT an acceptable minimal mo-
del, because it is inconsistent, because it also satisfies
{WarmerThan(milan, paris),¬WarmerThan(milan, paris),
WarmerThan(milan, london),¬WarmerThan(milan, london)}.

• All the other four proposed minimal models will contain the positive Ab predicates in
PMM2 or PMM3 and as a consequence not minimize abnormality.

So, this KB has two minimal models: PMM2 and PMM3.

1. WarmerThan(milan,moscow) is minimally entailed if it is entailed by all the minimal mo-
dels of KB. In both minimal models it is possible to obtain WarmerThan(milan,moscow)
in the classical sense, because (I(milan), I(moscow)) is in I(SouthOf) and I(moscow) is
not in I(Ab), so (I(milan), I(moscow)) is in I(WarmerThan).
This means that WarmerThan(milan,moscow) is minimally entailed by KB.

57

2. WarmerThan(milan, london) is minimally entailed if it is entailed by all the minimal mo-
dels of KB. In PMM2 it is possible to obtain WarmerThan(milan, london) in the classical
sense, because (I(milan), I(london)) is in I(SouthOf) and I(london) is not in I(Ab), so
(I(milan), I(london)) is in I(WarmerThan). However, in PMM3 it is no longer possible
to obtain WarmerThan(milan, london), because we have Ab(london).
This means that WarmerThan(milan, london) is NOT minimally entailed by KB.

Exercise 11.8 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Consider the following knowledge base:

S1 Cats usually don’t attack people.

S2 Wild cats are cats.

S3 Wild cats when threatened attack people.

S4 a is a cat.

S5 b is a wild cat and is different from a.

S6 b is threatened.

1. Translate this knowledge base into first-order logic, using the circumscription ap-
proach to translate the default rule S1. Translate S2 and S3 as normal first order
implications, which are true without exceptions. Use unary predicates C for cat, W
for wild cat, A for attack people, T for being threatened.

2. Does this knowledge base minimally entail ¬A(a) (a does not attack people)? Why?

3. Does this knowledge base minimally entail ¬A(b) (b does not attack people)? Why?

4. Translate this knowledge base into default logic.

5. What can you conclude about a and b using default logic?

6. Translate this knowledge base into autoepistemic logic.

7. What can you conclude about a and b using autoepistemic logic? Why?

Answer:

1. S1 ∀x[(C(x) ∧ ¬Ab(x)) ⊃ ¬A(x)]

S2 ∀x[W (x) ⊃ C(x)]

S3 ∀x[(W (x) ∧ T (x)) ⊃ A(x)]

S4 C(a)

S5 W (b) ∧ b 6= a

S6 T (b)

2. Yes, KB |=≤ ¬A(a). In circumscription we want to minimize abnormality, and we have
nothing that implies Ab(a), so we can assume ¬Ab(a). In conjunction with S4 and S1 we
can prove ¬A(a).
More formally:
We need to show that for any M , if M |= KB, then either M |= ¬A(a), or we can find
M ′ < M , that is, a model with a strictly smaller extension of Ab, such that M ′ |= KB.
Note that in order to satisfy KB, any interpretation M = (D, I) should have the following
properties:

58 11 DEFAULTS

S1’ all elements of D which are in I(C) and not in I(Ab) should not be in I(A)

S2’ I(W) ⊆ I(C)

S3’ I(W) ∩ I(T) ⊆ I(A)

S4’ I(a) ∈ I(C)

S5’ I(b) ∈ I(W), I(a) 6= I(b)

S6’ I(b) ∈ I(T)

From S5’ and S6’, I(b) ∈ I(W) ∩ I(T), so by S3’, I(b) ∈ I(A).
From S5’ and S2’, I(b) ∈ I(C). So from S1’, I(b) ∈ I(Ab). In other words, in any interpreta-
tion which satisfies KB, the element denoted by b has to be abnormal.
On the other hand, the element denoted by a, I(a), is different from I(b) by S5’ and can
always be removed from I(Ab) (provided that we also remove it from I(A)), and KB will
still be satisfied in the resulting interpretation. So any interpretation where I(a) ∈ I(Ab) is
not minimal and can be ignored for the purposes of minimal entailment.
If I(a) /∈ I(Ab), then from S4’ and S1’, I(a) is not in I(A), in other words all such interpre-
tations satisfy ¬A(a).

3. No, KB 2≤ ¬A(b). In fact, KB |= A(b) in the usual classical sense of entailment (S5, S6, S3),
so it also holds that KB |=≤ A(b) (if something is classically entailed, it is also minimally
entailed).

4. In default logic (change the first rule, keep the rest):

D1 C(x) :¬A(x)
¬A(x)

S2 ∀x[W (x) ⊃ C(x)]

S3 ∀x[(W (x) ∧ T (x)) ⊃ A(x)]

S4 C(a)

S5 W (b) ∧ b 6= a

S6 T (b)

5. In default logic extensions are constructed by adding the conclusions of all the default rules
that are applicable. Extensions must be consistent and all conclusions must be supported.
In this case, we have two possibilities of extensions, becauseD1 is only applicable to a (A(b)
is a consequence in the classical sense, so D1 is not applicable to b):

• PE1 |= {S2, S3, S4, S5, S6, A(b)} in this case D1 could have been applied to a and
was not. So this is NOT an extension.

• PE2 |= {S2, S3, S4, S5, S6, A(b),¬A(a)} this is consistent and all the applicable de-
fault rules were applied. So, this IS one possible extension.

So, we can conclude A(b),¬A(a) in the only possible extension.

6. In autoepistemic logic (change the first rule, keep the rest):

A1 ∀x[(C(x) ∧ ¬BA(x)) ⊃ ¬A(x)]

S2 ∀x[W (x) ⊃ C(x)]

S3 ∀x[(W (x) ∧ T (x)) ⊃ A(x)]

S4 C(a)

S5 W (b) ∧ b 6= a

S6 T (b)

7. To find the stable expansions, replace each Bα by TRUE or by FALSE, and for each com-
bination determine if the expansion satisfies positive and negative introspection (that is, if
Bα was replaced by TRUE KB0 |= α, if Bα was replaced by FALSE KB0 2 α). In this case,
we have four possible expansions, but only one is stable:

59

BA(a) BA(a) ¬BA(a) ¬BA(a)
BA(b) ¬BA(b) BA(b) ¬BA(b)
× × X ×

because because because
KB 2 A(a) KB |= A(b) KB |= A(b)

So, we can conclude ¬A(a) and A(b) in the single stable expansion.

Exercise 11.9 (new)
Consider the following knowledge base:

S1 Birds usually fly

S2 Penguins are birds

S3 Parrots are birds

S4 Penguins do not fly

S5 Bob is a penguin

S6 Carl is a parrot

S7 Carl is different from Bob

1. Translate this knowledge base into first-order logic, using the circumscription ap-
proach to translate the default rule S1.

2. Does this knowledge base minimally entail that Bob flies? Justify your answer.

3. Does this knowledge base minimally entail that Carl flies? Justify your answer.

4. Translate this knowledge base into default logic.

5. What can you conclude about Bob and Carl using default logic? Justify your answer.

6. Translate this knowledge base into autoepistemic logic.

7. What can you conclude about Bob and Carl using autoepistemic logic? Justify your
answer.

Answer:

Exercise 11.10 (new)
Consider the following knowledge base:

S1 Mollusks usually have a shell.

S2 Cephalopods are mollusks.

S3 Cephalopods usually do not have a shell.

S4 All nautilus are cephalopods.

S5 Nautilus usually have a shell.

60 11 DEFAULTS

S6 Nau is a nautilus.

1. Translate this knowledge base into first-order logic, using the circumscription ap-
proach to translate the default rules.

2. Does this knowledge base minimally entail that Nau has a shell? Justify your
answer.

3. Translate this knowledge base into default logic.

4. What can you conclude about Nau using default logic? Justify your answer.

5. Translate this knowledge base into autoepistemic logic.

6. What can you conclude about Nau using autoepistemic logic? Justify your answer.

Answer:

Exercise 11.11 (new)
Consider the following knowledge base:

S1 Eggs usually have cholesterol.

S2 Normal eggs are eggs.

S3 Brudy eggs are eggs.

S4 Brudy eggs do not have cholesterol.

S5 O1 is a normal egg.

S6 B1 is a Brudy egg.

S7 O1 and B1 are different from each other.

1. Translate this knowledge base into first-order logic, using the circumscription ap-
proach to translate the default rules.

2. Does this knowledge base minimally entail that O1 and B1 have cholesterol? Justify
your answer.

3. Translate this knowledge base into default logic.

4. What can you conclude about O1 and B1 using default logic? Justify your answer.

5. Translate this knowledge base into autoepistemic logic.

6. What can you conclude about O1 and B1 using autoepistemic logic? Justify your
answer.

Answer:

61

12 Vagueness, Uncertainty, and Degrees of Belief

Exercise 12.1 (new)
Explain the notion of a vague predicate. Give an example of a vague predicate along with
its degree curve.

Answer:

Exercise 12.2 (new)
Explain how conjunctions and disjunctions are handled in fuzzy logics.

Answer:

Exercise 12.3 (new)
Explain the meaning of the two values used in Dempster-Shafer theories to represent
degrees of belief.

Answer:

Instead of using a single number to represent a degree of belief, Dempster-Shafer representati-
ons use two-part measures, called belief and plausibility. These are essentially lower and upper
bounds on the probability of a proposition. For a coin known to be perfectly unbiased, we have .5
belief and .5 plausibility that the result is heads; but for the mystery coin, we have 0 belief that the
result is heads (meaning we have no reason to give it any credence) and 1 plausibility (meaning
we have no reason to disbelieve it either). The “value” of a propositional variable is represented
by a range, which we might call the possibility distribution of the variable.

Exercise 12.4 (new)
Explain the need for fuzzy reasoning systems, that is, explain why we sometimes need to
consider that something is not 100% true nor 100% false.

Answer:

Exercise 12.5 (Ch 12, Ex 2)
Consider the following example:

Metastatic cancer (a) is a possible cause of a brain tumor (c) and is also an
explanation for an increased total serum calcium (b). In turn, either of these
could cause a patient to fall into occasional coma (d). Severe headache (e)
could also be explained by a brain tumor (c).

1. Represent these causal links in a belief network. Let a stand for ’metastatic cancer’,
b for ’increased total serum calcium’, c for ’brain tumor’, d for ’occasional coma’,
and e for ’severe headaches’.

2. Give an example of an independence assumption that is implicit in this network.

3. Suppose the following probabilities are given:

Pr(a) = 0.2

62 12 VAGUENESS, UNCERTAINTY, AND DEGREES OF BELIEF

Pr(b|a) = 0.8

Pr(b|¬a) = 0.2

Pr(c|a) = 0.2

Pr(c|¬a) = 0.05

Pr(e|c) = 0.8

Pr(e|¬c) = 0.6

Pr(d|b ∧ c) = 0.8

Pr(d|b ∧ ¬c) = 0.8

Pr(d|¬b ∧ c) = 0.8

Pr(d|¬b ∧ ¬c) = 0.05

and assume that it is also given that some patient is suffering from severe headaches
(e) but has not fallen into a coma (¬d). Calculate joint probabilities for the eight
remaining possibilities (that is, according to whether a, b, and c are true or false).

4. According to the numbers given, the a priori probability that the patient has metas-
tatic cancer is 0.2. Given that the patient is suffering from severe headaches but has
not fallen into a coma, are we now more or less inclined to believe that the patient
has cancer? Explain.

Answer:

Remember that:
Negation: Pr(¬a) = 1− Pr(a)
Joint probability: J(A1, . . . , An) = Pr(A1|Parents(A1)) ∗ . . . ∗ Pr(An|Parents(An))

Conditional probability: Pr(a|b) = Pr(a∧b)
Pr(b)

Bayes’s rule: Pr(a|b) = Pr(a)∗Pr(b|a)
Pr(b)

1.
b

a d

c

e

2. It is assumed that each propositional variable in the belief network is conditionally inde-
pendent from the non-parent variables given the parent variables. In this case, there are
several independence assumptions:

• Pr(c|a ∧ b) = Pr(c|a), Pr(c|¬a ∧ b) = Pr(c|¬a), etc.
This means that b and c are independent.

• Pr(d|a ∧ b ∧ c) = Pr(d|b ∧ c)
• Pr(e|a ∧ b ∧ c ∧ d) = Pr(e|c)

3. I spell out the computation of the probability of the first conjunction in more detail, after
that I will skip the chain rule and use the negation rule without mentioning it.

63

(a) Pr(a ∧ b ∧ c ∧ ¬d ∧ e) =
(using the normal chain rule)
Pr(a) ∗ Pr(b|a) ∗ Pr(c|a ∧ b) ∗ Pr(¬d|a ∧ b ∧ c) ∗ Pr(e|a ∧ b ∧ c ∧ ¬d) =
(substituting conditional probabilities using independence assumptions of the network)
Pr(a) ∗ Pr(b|a) ∗ Pr(c|a) ∗ Pr(¬d|b ∧ c) ∗ Pr(e|c) =
(using the negation rule Pr(¬d|b ∧ c) = 1− Pr(d|b ∧ c))
Pr(a) ∗ Pr(b|a) ∗ Pr(c|a) ∗ (1− Pr(d|b ∧ c)) ∗ Pr(e|c) =
0.2 ∗ 0.8 ∗ 0.2 ∗ 0.2 ∗ 0.8 = 0.00512

(b) Pr(a ∧ b ∧ ¬c ∧ ¬d ∧ e) =
Pr(a) ∗ Pr(b|a) ∗ (1− Pr(c|a)) ∗ (1− Pr(d|b ∧ ¬c)) ∗ Pr(e|¬c) =
0.2 ∗ 0.8 ∗ 0.8 ∗ 0.2 ∗ 0.6 = 0.01536

(c) Pr(a ∧ ¬b ∧ c ∧ ¬d ∧ e) =
Pr(a) ∗ (1− Pr(b|a)) ∗ Pr(c|a) ∗ (1− Pr(d|¬b ∧ c)) ∗ Pr(e|c) =
0.2 ∗ 0.2 ∗ 0.2 ∗ 0.2 ∗ 0.8 = 0.00128

(d) Pr(a ∧ ¬b ∧ ¬c ∧ ¬d ∧ e) =
Pr(a) ∗ (1− Pr(b|a)) ∗ (1− Pr(c|a)) ∗ (1− Pr(d|¬b ∧ ¬c)) ∗ Pr(e|¬c) =
0.2 ∗ 0.2 ∗ 0.8 ∗ 0.95 ∗ 0.6 = 0.01824

(e) Pr(¬a ∧ b ∧ c ∧ ¬d ∧ e) =
(1− Pr(a)) ∗ Pr(b|¬a) ∗ Pr(c|¬a) ∗ (1− Pr(d|b ∧ c)) ∗ Pr(e|c) =
0.8 ∗ 0.2 ∗ 0.05 ∗ 0.2 ∗ 0.8 = 0.00128

(f) Pr(¬a ∧ b ∧ ¬c ∧ ¬d ∧ e) =
(1− Pr(a)) ∗ Pr(b|¬a) ∗ (1− Pr(c|¬a)) ∗ (1− Pr(d|b ∧ ¬c)) ∗ Pr(e|¬c) =
0.8 ∗ 0.2 ∗ 0.95 ∗ 0.2 ∗ 0.6 = 0.01824

(g) Pr(¬a ∧ ¬b ∧ c ∧ ¬d ∧ e) =
(1− Pr(a)) ∗ (1− Pr(b|¬a)) ∗ Pr(c|¬a) ∗ (1− Pr(d|¬b ∧ c)) ∗ Pr(e|c) =
0.8 ∗ 0.8 ∗ 0.05 ∗ 0.2 ∗ 0.8 = 0.00512

(h) Pr(¬a ∧ ¬b ∧ ¬c ∧ ¬d ∧ e) =
(1− Pr(a)) ∗ (1− Pr(b|¬a)) ∗ (1− Pr(c|¬a)) ∗ (1− Pr(d|¬b ∧ ¬c)) ∗ Pr(e|¬c) =
0.8 ∗ 0.8 ∗ 0.95 ∗ 0.95 ∗ 0.6 = 0.34656

4. We are asked whether Pr(a|¬d ∧ e) is greater or smaller than Pr(a).
Pr(a|¬d ∧ e) = Pr(a ∧ ¬d ∧ e)/Pr(¬d ∧ e) (conditional probability definition). We need to
compute Pr(a∧¬d∧e) and Pr(¬d∧e), and to do that we use the probabilities we computed
above. They describe all 8 possible states of the world given that ¬d and e are true, and they
are all disjoint. We are using Pr(X) = Pr(X ∧ Y) + Pr(X ∧ ¬Y), or that the probability of
the union of disjoint events equals to the sum of probabilities of those events.
So Pr(a ∧ ¬d ∧ e) = Pr(a ∧ b ∧ c ∧¬d ∧ e) + Pr(a ∧ b ∧ ¬c ∧ ¬d ∧ e) + Pr(a ∧ ¬b ∧ c ∧ ¬d ∧
e) + Pr(a ∧ ¬b ∧ ¬c ∧ ¬d ∧ e), that is, the sum of the first four values above:
Pr(a ∧ ¬d ∧ e) = 0.00512 + 0.01536 + 0.00128 + 0.01824 = 0.04
and
Pr(¬d ∧ e) is the sum of all 8 numbers above, that is:
Pr(¬d ∧ e) = 0.04 + 0.00128 + 0.01824 + 0.00512 + 0.34656 = 0.4112
so,
Pr(a|¬d ∧ e) = 0.04/0.4112 which is approximately 0.1.
So the probability got smaller.

Exercise 12.6 (from http://www.cs.nott.ac.uk/~nza/G53KRR)
Given the following belief network:

b

a

c

64 12 VAGUENESS, UNCERTAINTY, AND DEGREES OF BELIEF

And the following probabilities:

Pr(a) = 1/5

Pr(b|a) = 2/3

Pr(b|¬a) = 1/6

Pr(c|a) = 1/6

Pr(c|¬a) = 2/3

1. Give an example of an independence assumption that is implicit in this network.

2. What is the probability that a, b and c are all true?

3. What is the probability that a, b and c are all false?

4. What is the probability of b ∧ c?

5. Is b ∧ c more probable given that a is true or given that a is false?

Answer:

1. Pr(c|a) = Pr(c|a ∧ b)

2. Pr(a ∧ b ∧ c) = Pr(a) ∗ Pr(b|a) ∗ Pr(c|a) = 1/5 ∗ 2/3 ∗ 1/6 = 2/90 = 1/45

3. Pr(¬a∧¬b∧¬c) = (1−Pr(a))∗(1−Pr(b|¬a))∗(1−Pr(c|¬a)) = 4/5∗5/6∗1/3 = 20/90 = 2/9

4. Pr(b ∧ c) = Pr(a ∧ b ∧ c) + Pr(¬a ∧ b ∧ c) = 1/45 + (1 − Pr(a)) ∗ Pr(b|¬a) ∗ Pr(c|¬a) =
1/45 + 4/5 ∗ 1/6 ∗ 2/3 = 1/45 + 8/90 = 1/45 + 4/45 = 5/45 = 1/9

5. Pr(b ∧ c|a) = Pr(a ∧ b ∧ c)/Pr(a) = 1/45 ∗ 5 = 1/9
Pr(b ∧ c|¬a) = Pr(¬a ∧ b ∧ c)/Pr(¬a) = (4/45)/(4/5) = (4/45) ∗ (5/4) = 20/180 = 1/9 —
No difference.

Exercise 12.7 (new)
Consider that a influences c and d. b also influences d. The following probabilities are
given:

Pr(a) = 1/3

Pr(b) = 1/6

Pr(c|a) = 2/3

Pr(c|¬a) = 1/6

Pr(d|a ∧ b) = 1/6

Pr(d|a ∧ ¬b) = 2/6

Pr(d|¬a ∧ b) = 1/6

65

Pr(d|¬a ∧ ¬b) = 3/6

1. Represent these causal links in a belief network.

2. Give an example of an independence assumption that is implicit in this network.

3. What is the probability that a, b and c are all true?

4. What is the probability that a, b and d are all false?

5. What is the probability of c ∧ ¬d?

Answer:

1.

2.

3. Pr(a ∧ b ∧ c) = Pr(a ∧ b ∧ c ∧ d) + Pr(a ∧ b ∧ c ∧ ¬d) = Pr(a) ∗ Pr(b) ∗ Pr(c|a)

4. Pr(¬a∧¬b∧¬d) = Pr(¬a∧¬b∧c∧¬d)+Pr(¬a∧¬b∧¬c∧¬d) = Pr(¬a)∗Pr(¬b)∗Pr(¬d|a)

5.

Exercise 12.8 (new)
Consider the following information:
Michael usually has a headache (ha) if he has a cold (c) or if he worked late the previous
night (lpn). If Michael has a headache, he will probably be grumpy (gr).

1. Represent these causal links in a belief network.

2. Give an example of an independence assumption that is implicit in this network.

3. The following probabilities are given:

Pr(c) = 0.1

Pr(lpn) = 0.3

Pr(ha|c ∧ lpn) = 0.9

Pr(ha|c ∧ ¬lpn) = 0.7

Pr(ha|¬c ∧ lpn) = 0.6

Pr(ha|¬c ∧ ¬lpn) = 0.01

Pr(gr|ha) = 0.6

Pr(gr|¬ha) = 0.1

What is the probability that ha, c e gr are all true?

4. What is the probability that lpn, ha e gr are all false?

5. What is the probability of lpn ∧ ¬gr?

Answer:

66 12 VAGUENESS, UNCERTAINTY, AND DEGREES OF BELIEF

Exercise 12.9 (Adapted from Ch 12, Ex 4)
Consider the following information:
Sore elbows (soe) and sore hands (soh) can be the result of arthritis (a). Arthritis is also
a possible cause of tennis elbow (tel), which in turn may cause sore elbows. Ultra-dry
hands (dh) can also cause sore hands.

1. Represent these causal links in a belief network.

2. Give an example of an independence assumption that is implicit in this network.

3. The following probabilities are given:

Pr(a) = 0.001

Pr(dh) = 0.01

Pr(tel|a) = 0.0001

Pr(tel|¬a) = 0.01

Pr(soh|a ∧ dh) = Pr(soe|a ∧ tel) = 0.1

Pr(soh|a ∧ ¬dh) = Pr(soe|a ∧ ¬tel) = 0.99

Pr(soh|¬a ∧ dh) = Pr(soe|¬a ∧ tel) = 0.99

Pr(soh|¬a ∧ ¬dh) = Pr(soe|¬a ∧ ¬tel) = 0.00001

What is the probability that a, dh, tel and soh are all true?

4. What is the probability that a, dh, tel and soe are all false?

5. What is the probability of a ∧ ¬dh?

Answer:

67

13 Explanation and Diagnosis

Exercise 13.1 (new)
Explain why we can say that, in some sense, abductive reasoning is the converse of de-
ductive reasoning. Include in your explanation one example application for each type of
reasoning.

Answer:

Exercise 13.2 (new)
Explain the difference between abductive diagnosis and consistency-based diagnosis.

Answer:

Exercise 13.3 (new)
Explain the use of abductive reasoning. Give an example of a situation where it would
be useful.

Answer:

Exercise 13.4 (Ch 13, Ex 3)
Consider the binary circuit for logical AND depicted in this figure, where i1, i2 and i3
are logical inverters, and o1 is an OR gate.

! !

!

Chapter 13

Abduction

Hint:

relevant

Note:

1. In Chapter 4, we saw that Resolution was logically complete for the empty

clause, but not for clauses in general. Prove that Resolution is complete for

prime implicants that are not tautologous. Assume that is a prime

implicant of a set of clauses Then there is a derivation of given and the

negation of Show how to modify this derivation to obtain a new Resolution

derivation that ends with but uses only the clauses in

2. In this question we explore what it could mean to say that a KB “says some-

thing” about some topic. More precisely, we say that a set of propositional

clauses is to an atom iff appears (either positively or nega-

tively) in a non-tautologous prime implicate of .

(a) Give an example of a consistent set of clauses where an atom is

mentioned, but where is not relevant to .

(b) Suppose we have a clause , and a literal . Show that if

= , then appears in a prime implicate of .

(c) Suppose we have a clause , and a literal . Show that if

= , then is logically equivalent to where is with

replaced by .

(d) Suppose is consistent. Use parts (b) and (c) to show that is relevant

to iff there is a non-tautologous clause with , where =

or = such that = .

(e) Use part (d) to argue that there is polynomial time procedure that takes

a set of Horn clauses and an atom as arguments and decides whether

is relevant to . the naive way of doing this would take expo-

nential time since can have exponentially many prime implicates.

I1 I2 I3 O1

1

0 1

2003 R. BrachmanandH. Levesque May 2, 2003c 48

Figure 13.1: A circuit for AND

31

2

1

3. Consider the binary circuit for logical AND depicted in Figure 13.1, where

, , and are logical inverters, and is an OR gate.

(a) Write sentences describing this circuit: its components, connectivity,

and normal behaviour.

(b) Write a sentence for a fault model saying that a faulty inverter has its

output the same as its input.

(c) Assuming the above fault model and that the output is given inputs of

and , generate the three abductive explanations for this behaviour.

(d) Generate the three consistency-based diagnoses for this circuit under

the same conditions.

(e) Compare the abductive and consistency-based diagnoses and explain

informally why they are different.

1. Write sentences describing this circuit: its components, connectivity, and normal
behaviour.

2. Write a sentence for a fault model saying that a faulty inverter has its output the
same as its input.

3. Assuming the above fault model and that the output is 1 given inputs of 0 and 1,
generate the three abductive explanations for this behaviour.

4. Generate the three consistency-based diagnoses for this circuit under the same con-
ditions.

5. Compare the abductive and consistency-based diagnoses and explain informally
why they are different.

Answer:

68 13 EXPLANATION AND DIAGNOSIS

1. Logic description of the circuit:
Components

∀x[Gate(x) ≡ (OrGate(x) ∨ InvGate(x))]

OrGate(o1)

InvGate(i1)

InvGate(i2)

InvGate(i3)

AndCircuit(c)

Connectivity

in(i1) = in1(c)

in(i2) = in2(c)

in1(o1) = out(i1)

in2(o1) = out(i2)

in(i3) = out(o1)

out(i3) = out(c)

Truth tables

or(0, 0) = 0, or(0, 1) = 1, or(1, 0) = 1, or(1, 1) = 1

not(0) = 1, not(1) = 0

Normal behaviour

∀x[(OrGate(x) ∧ ¬Ab(x)) ⊃ out(x) = or(in1(x), in2(x))]

∀x[(InvGate(x) ∧ ¬Ab(x)) ⊃ out(x) = not(in(x))]

2. Fault model:

∀x[(InvGate(x) ∧Ab(x)) ⊃ out(x) = in(x)]

3. Expected behaviour for the circuit:

Observation: output is 1 given inputs of 0 and 1.

All possible explanations for this behaviour:
Ab(o1) Ab(i1) Ab(i2) Ab(i3) entails? consistent?

1-8 T T,F T,F T,F N Y
9 F T T T Y Y

10 F T T F N N
11 F T F T N N
12 F T F F Y Y
13 F F T T Y Y
14 F F T F N N
15 F F F T Y Y
16 F F F F N N

69

• Lines 1-8: In all these cases, we have Ab(o1). Because we do not have a
fault model for when an OrGate is faulty, we cannot determine
the actual output of the circuit. So, in these cases the observations
are not entailed, but they are consistent.

• Line 9: ¬Ab(o1) ⊃ Out(o1) = 1
Ab(i1) ⊃ Out(i1) = 0
Ab(i2) ⊃ Out(i2) = 1
Ab(i3) ⊃ Out(i3) = Out(c) = 1

• Line 10: ¬Ab(o1) ⊃ Out(o1) = 1
Ab(i1) ⊃ Out(i1) = 0
Ab(i2) ⊃ Out(i2) = 1
¬Ab(i3) ⊃ Out(i3) = Out(c) = 0

• Line 11: ¬Ab(o1) ⊃ Out(o1) = 0
Ab(i1) ⊃ Out(i1) = 0
¬Ab(i2) ⊃ Out(i2) = 0
Ab(i3) ⊃ Out(i3) = Out(c) = 0

• Line 12: ¬Ab(o1) ⊃ Out(o1) = 0
Ab(i1) ⊃ Out(i1) = 0
¬Ab(i2) ⊃ Out(i2) = 0
¬Ab(i3) ⊃ Out(i3) = Out(c) = 1

• Line 13: ¬Ab(o1) ⊃ Out(o1) = 1
¬Ab(i1) ⊃ Out(i1) = 1
Ab(i2) ⊃ Out(i2) = 1
Ab(i3) ⊃ Out(i3) = Out(c) = 1

• Line 14: ¬Ab(o1) ⊃ Out(o1) = 1
¬Ab(i1) ⊃ Out(i1) = 1
Ab(i2) ⊃ Out(i2) = 1
¬Ab(i3) ⊃ Out(i3) = Out(c) = 0

• Line 15: ¬Ab(o1) ⊃ Out(o1) = 1
¬Ab(i1) ⊃ Out(i1) = 1
¬Ab(i2) ⊃ Out(i2) = 0
Ab(i3) ⊃ Out(i3) = Out(c) = 1

• Line 16: ¬Ab(o1) ⊃ Out(o1) = 1
¬Ab(i1) ⊃ Out(i1) = 1
¬Ab(i2) ⊃ Out(i2) = 0
¬Ab(i3) ⊃ Out(i3) = Out(c) = 0

Abductive explanations: given a Knowledge Base and some input settings of the circuit,
explain some output observations of the circuit, in the language of Ab. We want minimal
conjunctions that entail the observations.
For this, only the lines where the observations are entailed matter. In this case, lines 9, 12,
13 and 15:
Line 9: ¬Ab(o1) ∧Ab(i1) ∧Ab(i2) ∧Ab(i3)
Line 12: ¬Ab(o1) ∧Ab(i1) ∧ ¬Ab(i2) ∧ ¬Ab(i3)
Line 13: ¬Ab(o1) ∧ ¬Ab(i1) ∧Ab(i2) ∧Ab(i3)
Line 15: ¬Ab(o1) ∧ ¬Ab(i1) ∧ ¬Ab(i2) ∧Ab(i3)
The abductive explanations are:
Join 9 and 13: ¬Ab(o1) ∧Ab(i2) ∧Ab(i3)
Join 13 and 15: ¬Ab(o1) ∧ ¬Ab(i1) ∧Ab(i3)
Line 12: ¬Ab(o1) ∧Ab(i1) ∧ ¬Ab(i2) ∧ ¬Ab(i3)

4. Consistency-based diagnoses: we look for minimal sets of assumptions of abnormality that
are consistent with the settings and observations. That is, consider only positive Ab, ignore
¬Ab and eliminate non-minimal sets.
For this, only the lines where the observations are consistent matter. In this case, lines 1-8,
9, 12, 13 and 15:

70 13 EXPLANATION AND DIAGNOSIS

Lines 1-8: Ab(o1) ; {o1}
Line 9: ¬Ab(o1) ∧Ab(i1) ∧Ab(i2) ∧Ab(i3) ; {i1, i2, i3}
Line 12: ¬Ab(o1) ∧Ab(i1) ∧ ¬Ab(i2) ∧ ¬Ab(i3) ; {i1}
Line 13: ¬Ab(o1) ∧ ¬Ab(i1) ∧Ab(i2) ∧Ab(i3) ; {i2, i3}
Line 15: ¬Ab(o1) ∧ ¬Ab(i1) ∧ ¬Ab(i2) ∧Ab(i3) ; {i3}
The abductive explanations are the minimal sets:
{o1}, {i1} and {i3}.

5. Compare the abductive and consistency-based diagnoses and explain informally why they
are different.

Exercise 13.5 (new)
Consider the binary circuit depicted in this figure, using the usual notation for logical
gates.

X1X1

O1O1

A1A1

1. Write sentences describing this circuit: its components, connectivity, and normal
behaviour.

2. Write sentences for a fault model saying that a faulty OR has its output the same as
its first input and that a faulty XOR has its output the same as its second input.

3. Assuming the above fault model and that the output is 0 given inputs of A = 1,
B = 0 and C = 1, generate the abductive explanations for this behaviour.

4. Generate the consistency-based diagnoses for this circuit under the same conditi-
ons.

Answer:

Exercise 13.6 (new)
Consider the binary circuit depicted in this figure, using the usual notation for logical
gates.

92 7 SISTEMAS DE REVISÃO DE CRENÇAS

4. Quais os valores que têm que ter as entradas A e B para a saída E ter o valor 1?
Resposta:

Basta consultar o rótulo do nó E1: ou (A = 1 e B = 1) ou B = 0.

5. E para E = 0?
Resposta:

E = 0 se A = 0 e B = 1.

6. E para C = 1?
Resposta:

C = 1 se A = 1 e B = 1.

Exercício 7.4 (AC)
Represente os seguintes circuitos usando um ATMS e rotule-os.

1.

A

B

C D E

Qual o valor de D se as entradas tiverem os valores A=0 e B=1?

E quais os valores que devem ter as entradas para a saida E ter o valor 0?

2.
A
B

C

D

E
F

Quais os valores que devem ter as entradas para a saida F ter o valor 0?

3.
A
B

C

D

E

F
G

Que valor terá a saída se A=0, B=1 e C=0?

4.
A
B
C

D E

Qual o valor de E se as entradas tiverem os valores A=0, B=1 e C=1?

E quais os valores que devem ter as entradas para a saida E ter o valor 0?

1. Write sentences describing this circuit: its components, connectivity, and normal
behaviour.

2. Write sentences for a fault model saying that a faulty AND has its output the same
as its first input and that a faulty XOR has its output the same as its second input.

71

3. Assuming the above fault model and that the output is 0 given inputs of A = 1 and
B = 1, generate the abductive explanations and the consistency-based diagnoses
for this behavior.

Answer:

72 13 EXPLANATION AND DIAGNOSIS

73

14 Actions

Exercise 14.1 (new)
Explain why the frame axioms are needed in situation calculus. Give an illustrating exam-
ple.

Answer:

Exercise 14.2 (new)
Explain what are the fluents in situation calculus. Give an illustrating example.

Answer:

Exercise 14.3 (new)
Explain two of the limitations of situational calculus.

Answer:

• single agent: there are no unknown or unobserved exogenous actions performed by other
agents, and no unnamed events;

• no time: we have not talked about how long an action takes, or when it occurs;

• no concurrency: if a situation is the result of performing two actions, one of them is perfor-
med first and the other afterward;

• discrete actions: there are no continuous actions like pushing an object from one point to
another or filling a bathtub with water;

• only hypotheticals: we cannot say that an action has occurred in reality, or will occur;

• only primitive actions: there are no actions that are constructed from other actions as parts,
such as iterations or conditionals.

Exercise 14.4 (new)
Comment the following statement: “situational calculus uses as a representation lan-
guage a fragment of first order logic, namely propositional logic”.

Answer:

The statement is false. Situational calculus needs at least one constant to represent the initial
situation s0. Constants do not exist in propositional logic.

Exercise 14.5 (Ch 14, Ex 1)
In the exercises below, and in the follow-up exercises of Chapter 15, we consider three
application domains where we would like to be able to reason about action and change:

Pots of water: Consider a world with pots that may contain water. There is a single fluent
Contains, where Contains(p, w, s) is intended to say that a pot p contains w litres of
water in situation s. There are only two possible actions, which can always be executed:
empty(p) which discards all the water contained in the pot p, and transfer(p, p′), which
pours as much water as possible without spilling from pot p to p′, with no change when
p = p′. To simplify the formalization, we assume that the usual arithmetic constants,
functions and predicates are also available. (You may assume that axioms for these have
already been provided or built-in.)

74 14 ACTIONS

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Show how successor state axioms for the fluents would be derived from these effect
axioms.

4. Show how frame axioms are logically entailed by the successor state axioms.

Answer:

1. Pots of water

• Fluent: Contains(p, w, s)

• Actions: empty(p) and transfer(p, p′)

Precondition axioms for the actions (in this case, it is always possible to execute both acti-
ons, as stated in the problem description):

• Poss(empty(p), s) ≡ True
• Poss(transfer(p, p′), s) ≡ True

2. Effect axioms for the actions:

• Contains(p, 0, do(empty(p), s))

• (Contains(p, w, s) ∧ Contains(p′, w′, s)) ⊃
(Contains(p,max(w − (capacity(p′)− w′), 0), do(transfer(p, p′), s)) ∧
Contains(p′,min(capacity(p′), w + w′), do(transfer(p, p′), s)))

• Contains(p, w, s) ⊃ Contains(p, w, do(transfer(p, p), s))

3. Successor state axioms:

• Contains(p, wf, do(a, s)) ≡
(a = empty(p) ∧ wf = 0) ∨
(a = transfer(p, p′) ∧ Contains(p, w, s) ∧ Contains(p′, w′, s) ∧
wf = max(w − (capacity(p′)− w′), 0)) ∨
(a = transfer(p′, p) ∧ Contains(p, w, s) ∧ Contains(p′, w′, s) ∧
wf = min(capacity(p), w + w′)) ∨
(Contains(p, wf, s)∧a 6= empty(p)∧∀p′[a 6= transfer(p, p′)]∧∀p′[a 6= transfer(p′, p)])

4. Frame axioms: in this case, we have no frame axioms, because both actions affect the single
fluent. So, the single fluent that can change changes with every action.

Exercise 14.6 (from http://www.ime.usp.br/~liamf/cursoLegolog)
Consider a world consisting of way stations connected by pathways that can run north,
east, south and west; at any location, there may not be pathways leading in all of the
directions. You wish to navigate a robot around this world. The state of the robot is
governed by two fluents:

• Location(x, s) — the robot is located at way station x in situation s

• Direction(x, s) — the robot is facing direction x (north, east, south, west) in situa-
tion s

The robot is capable of performing the following actions:

75

• forward which takes it to the next station in the direction it is facing

• turnClockwise changes its direction 90 degrees by turning in a clockwise direction

You may also assume the following relations:

• Connected(x, y, direction) — the robot can go from location x to location y by mo-
ving forward if it is facing direction

• Clockwise(x, y) — when facing direction x a clockwise turn by 90 degrees will make
it face direction y

There are also constant symbols for each of the way stations but for our purposes here it
is sufficient to distinguish only two of them: home and depot.

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Write the successor state axioms for Location which can be derived from the previ-
ous axioms.

Answer:

1. Precondition axioms for the actions:

• Poss(turnClockwise, s) ≡ True
• Poss(forward, s) ≡ Location(x, s) ∧Direction(d, s) ∧ Connected(x, y, d)

2. Effect axioms for the actions:

• (Direction(x, s) ∧ Clockwise(x, y)) ⊃ Direction(y, do(turnClockwise, s))

• (Location(x, s) ∧Direction(d, s) ∧ Connected(x, y, d)) ⊃ Location(y, do(forward, s))

3. Successor state axioms for Location:

• Location(y, do(a, s)) ≡
(Location(x, s) ∧Direction(d, s) ∧ Connected(x, y, d) ∧ a = forward) ∨
(Location(y, s) ∧ a 6= forward)
This includes turnClockwise, which doesn’t change the robot’s location.

Exercise 14.7 (new)
Consider a situation where you want a robot to make a simple eggnog (egg yolk mixed
with sugar). The robot can have or not have a bowl, have or not have egg yolks, have or
not have sugar. The state of the robot is controlled in the world by the following fluents:

• HasBowl(x, s) — the robot has bowl x in situation s.

• HasY olk(x, s) — the robot has yolk x in situation s.

• HasSugar(x, s) — the robot has sugar x in situation s.

• HasY olkInBowl(x, y, s) — the robot has yolk x in bowl y in situation s.

76 14 ACTIONS

• HasSugarInBowl(x, y, s) — the robot has sugar x in bowl y in situation s.

• HasEggnogInBowl(x, y, s) — the robot has eggnog x in bowl y in situation s.

The robot can perform the following actions:

• grabBowl the robot grabs a bowl.

• putY olk the robot puts the yolk in the bowl.

• putSugar the robot puts the sugar in the bowl.

• makeEggnog the robot mixes the yolk with the sugar in the bowl.

We can also assume that:

• The robot can always grab a bowl (and he has a bowl after that).

• If the robot has a yolk and has a bowl, he can put the yolk in the bowl.

• If the robot has sugar and has a bowl, he can put the sugar in the bowl.

• If the yolk and the sugar are in the bowl, the robot can mix them together.

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Write the successor state axioms for HasSugarInBowl which can be derived from
the previous axioms.

Answer:

77

15 Planning

Exercise 15.1 (new)
Explain the difference between progressive planning and regressive planning.

Answer:

Exercise 15.2 (new)
Explain why it is not practical to use resolution theorem proving over the situation cal-
culus for planning.

Answer:

Exercise 15.3 (new)
Explain what is the STRIPS assumption, that is, what assumptions the STRIPS system is
based on.

Answer:

In STRIPS, we assume that the world we are trying to deal with satisfies the following crite-
ria: (1) only one action can occur at a time; (2) actions are effectively instantaneous; (3) nothing
changes except as the result of planned actions. In this context, this has been called the STRIPS
assumption, but it clearly applies just as well to our version of the situation calculus. What really
distinguishes STRIPS from the situation calculus is that knowledge about the initial state of the
world is required to be complete, and knowledge about the effects and noneffects of actions is
required to be in a specific form.

Exercise 15.4 (new)
Explain why in STRIPS it is not necessary to have situations as an argument for the ope-
rators.

Answer:

Exercise 15.5 (Ch 15, Ex 1)
This exercise is a continuation of exercise 14.5. For each application, we consider a plan-
ning problem involving an initial setup and a goal.

Pots of water: Imagine that in the initial situation, we have two pots, a 5-litre one filled
with water, and an empty 2-litre one. Our goal is to obtain 1 litre of water in the 2-litre
pot.

1. Write a sentence of the situation calculus of the form ∃x.α which asserts the exis-
tence of the final goal situation.

2. Write a ground situation term e (that is, a term that is either S0 or of the form
do(a, e′) where a is a ground action term and e′ is itself a ground situation term)
such that e denotes the desired goal situation.

3. Explain how you could use Resolution to automatically solve the problem for any
initial state: how would you generate the clauses, and assuming the process stops,

78 15 PLANNING

how would you extract the necessary moves? Explain why you need to use the
successor state axioms, and not just effect axioms.

4. Suppose we were interested in formalizing the problem using a STRIPS represen-
tation. Decide what the operators should be, and then write the precondition, add
list, and delete list for each operator. You may change the language as necessary.

5. Consider the database corresponding to the initial state of the problem. For each
STRIPS operator, and each binding of its variables such that the precondition is
satisfied, state what the database progressed through this operator would be.

6. Consider the final goal state of the problem. For each STRIPS operator, describe the
bindings of its variables for which the operator can be the final action of a plan, and
in those cases, what the goal regressed through the operator would be.

Answer:

Initial state: Contains(p5, 5, s0) and Contains(p2, 0, s0).

1. Existence of the goal situation:
∃s[Contains(p2, 1, s) ∧ Legal(s)]

2. Description of the goal situation:
do(transfer(p5, p2), do(empty(p2), do(transfer(p5, p2), do(empty(p2), do(transfer(p5, p2), s0)))))

3. We could use resolution to automatically solve the problem for any initial state by starting
with the negated goal, the successor state axiom and the description of the initial state
and applying resolution until we get the empty clause. The plan would be obtained by
unification of the variables used during the proof.

4. Initial world model in STRIPS:

• Contains(p5, 5)

• Contains(p2, 0)

• capacity(p5) = 5

• capacity(p2) = 2

Operator Empty(p)

• Preconditions: Contains(p, w)

• Delete list: Contains(p, w)

• Add list: Contains(p, 0)

Operator Tansfer(p, p′)

• Preconditions: Contains(p, w), Contains(p′, w′), p 6= p′

• Delete list: Contains(p, w), Contains(p′, w′)

• Add list: Contains(p,max(w−(capacity(p′)−w′), 0)), Contains(p′,min(capacity(p′), w+
w′))

5. For each STRIPS operator, and each binding of its variables such that the precondition is
satisfied, state what the initial database progressed through this operator would be.
Empty(p2)

• Contains(p5, 5)

• Contains(p2, 0)

• capacity(p5) = 5

79

• capacity(p2) = 2

Empty(p5)

• Contains(p5, 0)

• Contains(p2, 0)

• capacity(p5) = 5

• capacity(p2) = 2

Tansfer(p2, p5)

• Contains(p5, 5)

• Contains(p2, 0)

• capacity(p5) = 5

• capacity(p2) = 2

Tansfer(p5, p2)

• Contains(p5, 3)

• Contains(p2, 2)

• capacity(p5) = 5

• capacity(p2) = 2

Tansfer(p2, p2) and Tansfer(p5, p5) are not considered because the preconditions are not
satisfied (p 6= p′).

6. For each STRIPS operator, describe the bindings of its variables for which the operator can
be the final action of a plan, and in those cases, what the goal regressed through the operator
would be.
Each operator is applicable if its Delete list ∩Goal = {}.
New Goal = Goal + Preconditions - Add list
Goal: Contains(p2, 1)
Apply transfer(p5, p2)
= Contains(p2, 1) +
+ Contains(p5, w) + Contains(p2, w′) + p5 6= p2−
−Contains(p5,max(w− (capacity(p5)−w′), 0))−Contains(p2,min(capacity(p2), w+w′))

Exercise 15.6 (from http://www.ime.usp.br/~liamf/cursoLegolog)
This exercise is a continuation of exercise 14.6. In the initial situation the robot is located
at home facing north. You are to consider navigating the robot so that it ends up being
located at depot.

1. Write a sentence of the situation calculus whose only situation term is S0, descri-
bing the initial situation.

2. Write a sentence of the situation calculus of the form ∃x.α which asserts the exis-
tence of the final goal situation.

3. Suppose that we were interested in formalizing the problem using a STRIPS repre-
sentation. Decide what the operators should be, and then write the precondition,
add list, and delete list for each operator. You may change the language as neces-
sary.

4. Consider the database corresponding to the initial state of the problem. For each
STRIPS operator, and each binding of its variables such that the precondition is
satisfied, state what the database progressed through this operator would be.

80 15 PLANNING

Answer:

1. Location(home, s0) ∧Direction(north, s0)

2. ∃x[Location(depot, x) ∧ Legal(x)]

3. Operator turnClockwise

• Preconditions: Direction(d1), Clockwise(d1, d2)

• Delete list: Direction(d1)

• Add list: Direction(d2)

Operator forward

• Preconditions: Location(x1), Direction(d), Connected(x1, x2, d)

• Delete list: Location(x1)

• Add list: Location(x2)

4. Only the conditions for turnClockwise are satisfied. Progressed database is: Location(home),
Direction(east)

Exercise 15.7 (new)
This exercise is a continuation of exercise 14.7. In the initial situation the robot HasY olk
and HasSugar. We want the robot to make eggnog.

1. Write a sentence of the situation calculus whose only situation term is S0, that des-
cribes the initial situation.

2. Write a sentence of the situation calculus of the form ∃x.α which asserts the exis-
tence of the final goal situation.

3. Suppose we were interested in formalizing the problem using a STRIPS represen-
tation. Decide what the operators should be, and then write the precondition, add
list, and delete list for each operator.

4. Consider the database corresponding to the initial state of the problem. For one
STRIPS operator of your choice, and one binding of its variables such that the
precondition is satisfied, state what the database progressed through this operator
would be.

Answer:

81

16 The Tradeoff between Expressiveness and Tractability

Exercise 16.1 (new)
Explain the meaning of the phrase: “A fundamental fact of life is that there is a trade-
off between the expressiveness of the representation language and the tractability of the
associated reasoning task”.

Answer:

Exercise 16.2 (new)
Explain why reasoning by cases is hard and can in some situations cause intractability.

Answer:

Exercise 16.3 (new)
Explain the need for the development of limited representation languages, instead of
more generic languages. Illustrate with an example.

Answer:

Exercise 16.4 (new)
Explain the reason why the limited languages that we studied (eg. Horn clauses, descrip-
tion logics) do not allow for the representation of disjunctions.

Answer:

Because disjunctions are used to represent incomplete knowledge and incomplete knowledge
may cause intractability, because in this case it is necessary to consider all the possible combinati-
ons of all possible cases.

