
Permissive Belief Revision
(preliminary report)

Maria R. Cravo, João P. Cachopo, Ana C. Cachopo, João P. Martins

{mrcravo,jcachopo,acardoso,jpm}@gia.ist.utl.pt
Instituto Superior Técnico
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Abstract

We point out that current belief revision opera-
tions can be used to revise non-monotonic the-
ories and we propose a new operation, called
permissive belief revision. The underlying idea
of permissive belief revision consists of instead
of abandoning some beliefs during a revision,
transforming those beliefs into weaker ones,
while still keeping the resulting belief set con-
sistent. This framework allows us to keep more
beliefs than what is usual using existent belief
base-based revision theories.

1 Introduction

In this paper we are concerned with belief revision and
with non-monotonic logics. In this section, we intro-
duce the terminology that we use for belief revision and
the main concepts in one non-monotonic logic formalism
(default logic).

Although our presentation uses default logic, the basic
ideas can be applied to any non-monotonic logic. Here,
default logic should be taken as a general language for
speaking about non-monotonic logics. It should not be
understood as the chosen logic, to which we intend to ap-
ply our work. Further details would have to be specified
for each particular non-monotonic logic.

1.1 Notation

Lower case greek letters (α, β, ...) represent meta-
variables that range over single formulas; lower case ro-
man letters (a, b, ...) represent single atomic formulas;
upper case roman letters (A, B, ...) represent sets of for-
mulas; L represents the language of classical logic (either
propositional or first-order logic).

1.2 Belief revision

One of the main sources of inspiration in belief revision,
the AGM theory, follows the work of [Alchourrón et al.,
1985]. AGM deals with deductively closed sets of sen-
tences, called sets of beliefs. According to AGM, there
are three operations on sets of beliefs: expansions, con-
tractions, and revisions.

AGM presents a drawback from a computational point
of view, since it deals with infinite sets of beliefs.
Both [Nebel, 1989; 1990] and [Fuhrmann, 1991] modi-
fied AGM by working with a finite set of propositions,
called a belief base, B, and using the set of consequences
of B, defined as Cn(B) = {φ : B ⊢ φ}.1

We use Nebel’s notions of belief revision, a finite set
of beliefs, and we only address the revision operation.
The revision of a consistent belief base B with a for-
mula φ, represented by (B ∗ φ), consists in changing B
in such a way that it contains φ and is consistent (if B
is consistent). The case of interest is when B ∪ {φ} is
inconsistent, because, otherwise, φ can just be added to
B.

To perform the revision (B ∗ φ) when B ∪ {φ} is in-
consistent, we have to remove something from B, before
we can add φ. In other words, in a revision (B ∗φ) some
formulas must be discarded from B.

1.3 Non-monotonic logics

Any non-monotonic formalism is composed of classical
formulas (formulas that either belong to propositional
logic or to first order logic, depending on the formal-
ism) together with a way of expressing rules with excep-
tions (defaults) and exceptions to those rules: Default
Logic [Reiter, 1980] is composed by a set of classical for-
mulas, W , and by default rules, D, that are expressed
as rules of inference; Auto-epistemic Logic [Moore, 1983;
1985; 1988] extends the language of first-order logic with
the modal operatorB (the intuitive interpretation of Bα
is “I believe in α”); Circumscription [McCarthy, 1980;
1986], uses the predicate Ab to identify exceptions to
rules and provides a way of “jumping to conclusions”
and to infer certain properties about the objects that
satisfy certain relations.

In this paper we present examples based on Default
Logic. Here, we recall the main concepts of Default
Logic. Default Logic uses the language of classical logic,
and, besides the classical rules of inference, it uses rules
of inference of the form: α(~x) : β1(~x), ..., βm(~x)/γ(~x),
where α(~x), β1(~x), ..., βm(~x), and γ(~x) are formulas
whose free variables belong to the vector ~x = (x1, ..., xn).

1
⊢ represents the classical derivability operation.



Such a rule of inference, default rule, is interpreted in the
following way: from α( ~x0),

2 if it is consistent to assume
β1( ~x0),...,βm( ~x0), then we can infer γ( ~x0). Default rules
can be looked at as suggestions with respect to what we
should believe, in addition to what is dictated by classi-
cal logic.

A default theory is a pair (D,W ), composed of a set of
default rules, D, and by a set of closed formulas, W ⊂ L.
Given a default theory (D,W ), we want to compute its
consequences, the sets of formulas derivable from W us-
ing the rules of inference of classical logic and the default
rules in D. In Default Logic, there may be more than
one of these sets or even none. Each one of these sets is
called an extension of the default theory (D,W ). Each
extension may be interpreted as a reasonable set of be-
liefs generated from W , using the default rules in D.

1.4 Contributions

We address the revision operation in relation with non-
monotonic theories and we use it in two aspects:

1. We use the classical revision “∗” applied to a non-
monotonic theory. This application is done over the
classical formulas of the theory and does not change
the default rules and exceptions of the theory;

2. We define a revision operation, called permissive re-
vision and denoted by “~”, that adds to the results
of the classical revision a weaker version of the for-
mulas removed by the classical revision operation.
Given two formulas f and w, we say thatw is weaker
than f if and only if everything that is derivable
from w was also derivable from f , but not the in-
verse.3

This second aspect can either be applied to a mono-
tonic or to a non-monotonic theory. The main difference
between the two types of theories results from the fact
that in a non-monotonic theory, universal rules may be
weakened by being turned into default rules.

In this paper we give greater emphasis to permissive
revision using a monotonic logic, although we point out
research directions towards non-monotonic logics.

2 Revision of non-monotonic theories

Most belief revision theories consider classical logic as
their underlying logic. We refer to these as classical belief
revision theories. In this section we discuss how classical
belief revision can be used to determine what the revision
of a default theory with a formula should be (but not the
contraction of a default theory with a formula). Given a
default theory, (D,W ), we can distinguish two types of
consequences:

• Classical consequences. The formulas which are a
classical consequence of W . The classical conse-
quences are the set {φ : W ⊢ φ}.

2
~x0 is an instance of ~x.

3This is based on the definition presented in [Quine and
Ullian, 1978].

• Defeasible consequences. The consequences that
were reached by using at least one default rule. If
E is an extension of (D,W ), the defeasible conse-
quences in E are the set E − {φ : W ⊢ φ}.

When we revise a default theory (D,W ), with a for-
mula φ, two things may happen:4

1. If φ is consistent with the consequences (classical or
defeasible) of (D,W ), nothing needs to be done, the
revised theory is (D, (W ∪ {φ})).

2. If φ is inconsistent with some consequence of (D,W )
we must distinguish between two cases (notice that
these are not mutually exclusive):

(a) If φ is inconsistent with a classical consequence
of (D,W ), we can use a classical belief revision
to determine (W∗φ), and the set of default rules
does not need to be changed. In other words,
the revision ((D,W ) ∗ φ) is (D, (W ∗ φ)).

(b) If φ is inconsistent with a defeasible conse-
quence of (D,W ), nothing needs to be done,
the logic will take care of the problem.

In summary, the revision of a default theory with a
formula is defined by:

((D,W ) ∗ φ) = (D, (W ∗ φ))

Note that the same symbol “∗”, is being used for the
revision of a default theory, in ((D,W )∗φ), and for clas-
sical revision, in (D, (W ∗ φ)). Since there is no possible
confusion, we do not introduce a different symbol.

3 Permissive revision

3.1 Motivations

The idea of permissive revision is to transform the beliefs
that were discarded in a classical revision into weaker
versions and to add them to the result of the revision.
Permissive revision, thus, corresponds to a “smaller”
change in beliefs than classical revision, while keeping
the goal of having a consistent result.

Conjunctions are the most obvious candidates to
be weakened. This aspect was already recognized
by [Lehmann, 1995], who discussed that revision theories
sometimes require to give up too many beliefs, without
providing a solution to the problem. While Lehmann

4Thanks to the anonymous reviewer that pointed out that
this may produce a theory with no extensions. Should we
decide to particularize this work for default logic, something
would have to be done, namely to revise the default rules of
the theory (something in the line of the work of [Witteveen
et al., 1994]). However, that would be a completely different
issue from the ones addressed in this paper, where only the
revision of the classical formulas of a non-monotonic theory
is contemplated. It should also be noted that the problem of
getting a default theory with no extensions after a revision
with a classical formula is just a manifestation of the more
general fact that there are default theories with no extensions.
This does not happen in all non-monotonic logics [Cravo,
1993b; Poole, 1988].



only presents the problem regarding conjunctions, we
argue that this problem is more general and that it can
arise with other kinds of formulas.

To illustrate the main idea behind the weakening of
conjunctions, suppose, for instance, that some classical
revision operation provides the result:

({a ∧ b, a⇒ c} ∗ ¬c) = {a⇒ c,¬c}

Permissive revision weakens the abandoned formula,
a∧b, to b, and adds this to the result of classical revision:

({a ∧ b, a⇒ c}~ ¬c) = {b, a⇒ c,¬c}

If we are using a non-monotonic logic, other obvious
candidates to be weakened are universal rules. For in-
stance, suppose that we are using Default Logic, and we
have a theory (D,W ), where

D = {}

W = {Bird(T ),∀(x)Bird(x)⇒ F lies(x)}

Further, assume that some classical revision operation
gives us the following result:

((D,W )∗¬F lies(T )) = ({}, {Bird(T ),¬F lies(T )})

Permissive revision weakens the abandoned formula,
∀(x)Bird(x)⇒F lies(x), toBird(x) : F lies(x)/F lies(x),
and adds this to the result of classical revision:

((D,W )~ ¬F lies(T )) =

({Bird(x) : F lies(x)/F lies(x)},

{Bird(T ),¬F lies(T )})

3.2 Formalization

By now, it should be clear that the main task in defin-
ing permissive revision is the definition of a function
Wk, which weakens the formula that was removed dur-
ing classical revision. Actually, since there may be more
than one such formula, we consider the conjunction of
all the removed formulas, and weaken it into a new for-
mula which will then be added to the result of classical
revision to obtain permissive revision.

The function Wk will have different definitions, de-
pending on whether we are using classical logic, a non-
monotonic logic or some other logic. For instance, weak-
ening a universally quantified formula into a default will
not make sense in first order logic. For now we will re-
strict ourselves to classical first order logic.

Weakening a formula depends, naturally, on the set of
formulas into which we will be adding the result. There-
fore, the function Wk will receive the formula to weaken
and a set of formulas:

Wk : L× 2L → L

Wk(φ,W ) can be interpreted as “Weaken the formula φ,
in such a way that after the weakened formula is added
to W , the resulting set is not inconsistent”.

Given such a function, we can formally define the per-
missive revision of a set of formulas W with a formula

φ, (W ~ φ). Let Abandoned be the conjunction of all
the formulas which were abandoned during the classical
revision of W with φ, Abandoned =

∧

(W − (W ∗ φ)).
Then, the permissive revision of W with φ is given by

(W ~ φ) = (W ∗ φ) ∪ {Wk(Abandoned, (W ∗ φ))}

Let’s now see how a formula is weakened. Obviously,
this depends on the type of formula in question. The
two examples in the previous section convey the main
ideas behind weakening conjunctions and universal rules.
However, there are other logical symbols, besides con-
junctions and the universal quantifier, and there may
be nested occurrences of each of these. Considering the
usual logical symbols, {¬,⇒,∧,∨,∃,∀}, we have the fol-
lowing definition for Wk.

Wk(φ,W ) =



















































φ if W ∪ {φ} is consistent

WkN(φ,W ) if φ is a negation

WkI(φ,W ) if φ is an implication

WkD(φ,W ) if φ is a disjunction

WkC(φ,W ) if φ is a conjunction

WkE(φ,W ) if φ is an existential rule

WkU(φ,W ) if φ is a universal rule

⊤ otherwise

Note that, although Wk will only be used, in the con-
text of permissive revision, to weaken a formula φ known
to be inconsistent with W , the weakening process is re-
cursive (on the structure of formulas), and there may
be sub-formulas which are consistent with W . That’s
the reason for the first case. As for the last case, which
means that φ is an atomic formula inconsistent with W ,
there is no weaker formula we can give than a valid for-
mula.

Next, we define each of the weakening functions men-
tioned above. We should keep in mind that a good weak-
ening function should allow us to keep as much infor-
mation as possible. In order to do that for non-atomic
formulas, we weaken each sub-formula and combine the
results.

When φ = ¬α, for some atomic formula α, there is
nothing we can retain of the weakening of φ. However,
if α is a non-atomic formula, a ∨ b, for instance, we can
apply logical transformations to φ to bring to the surface
a kind of formula we know how to handle. In this case
¬(a ∨ b) is logically equivalent to (¬a) ∧ (¬b).

WkN(φ,W ) =











































Wk(¬α ∧ ¬β,W ) if φ = ¬(α ∨ β)

Wk(¬α ∨ ¬β,W ) if φ = ¬(α ∧ β)

Wk(α ∧ ¬β,W ) if φ = ¬(α⇒ β)

Wk(α,W ) if φ = ¬¬α

Wk(∀(x)¬α(x),W ) if φ = ¬∃(x)α(x)

Wk(∃(x)¬α(x),W ) if φ = ¬∀(x)α(x)

⊤ otherwise

Weakening an implication is treated in a similar way,
transforming the implication into the logically equivalent
disjunction, and weakening the result instead.

WkI(α⇒ β,W ) = Wk(¬α ∨ β,W )



If φ = α∨ β, and it is inconsistent with W (otherwise
WkD would not be used), then both α and β are incon-
sistent with W . So, to weaken φ we have to individually
weaken both α and β, in W , and combine the results
with the disjunction again.

WkD(α ∨ β,W ) = Wk(α,W ) ∨ Wk(β,W )

Conjunction seems to be a more complex case. To
help understand its definition we present some examples.
First, consider the set W = {a∧ b} and its revision with
¬a. Using permissive revision, we use Wk(a ∧ b, {¬a})
and expect it to give b. We just have to abandon one
of the elements of the conjunction and keep the other.
However, if each element is itself a non-atomic formula,
the contradiction may be deeper inside in either one or
in both of the elements of the conjunction. For instance,
given W = {(a∧b)∧ (c∧d)} and revising it with ¬(b∧c)
we would like to get (a ∧ (c ∧ d)) ∨ ((a ∧ b) ∧ d), i.e., if
it’s not possible to have both b and c, then we would like
to have either a, b and d or a, c and d. This is the result
of WkC((a ∧ b) ∧ (c ∧ d), {¬(b ∧ c)}), according to the
following definition.

WkC(α ∧ β,W ) =

(Wk(α,W ) ∧ Wk(β,W ∪ {Wk(α,W )})) ∨

(Wk(β,W ) ∧ Wk(α,W ∪ {Wk(β,W )}))

Handling existentially quantified formulas will be done
through skolemization, weakening the formula which re-
sults from the elimination of the existential quantifier.

WkE(∃(x)α(x),W ) = Wk(α(p),W )

where p is a Skolem constant

Although in the motivation one of the presented ex-
amples deals with universally quantified formulas, that
example assumes an underlying non-monotonic logic. In
a classical setting, as we are now, weakening this kind of
formula is somewhat more difficult. We briefly discuss
this in the following section and for now use the simpler
possible definition.

WkU(∀(x)α(x),W ) = ⊤

Before we prove some desirable properties of the weak-
ening function, we present an example that shows the
weakening of a disjunction of conjunctions. Given the
set

W = {(a ∧ b) ∨ (c ∧ d), b⇒ e, d⇒ e, a⇒ f, c⇒ f}

suppose

(W ∗ ¬e) = {b⇒ e, d⇒ e, a⇒ f, c⇒ f,¬e}

then

Wk((a ∧ b) ∨ (c ∧ d), (W ∗ ¬e)) =

=WkD((a∧ b) ∨ (c ∧ d), (W ∗ ¬e)) =

=Wk(a ∧ b, (W ∗ ¬e)) ∨ Wk(c ∧ d, (W ∗ ¬e)) =

=WkC(a ∧ b, (W ∗ ¬e)) ∨ WkC(c ∧ d, (W ∗ ¬e)) =

=a ∨ c

and

(W ~ ¬e) = {a ∨ c, b⇒ e, d⇒ e, a⇒ f, c⇒ f,¬e}

Note that in the classical revision we can no longer
derive, for instance f , but this is still a consequence of
the permissive revision.

Even though we have not fully studied which proper-
ties the Wk function should have, there are some proper-
ties that we certainly want it to have: we don’t want to
produce an inconsistent set when adding the weakening
of a formula to the result of the classical revision, nor do
we want to be able to derive new conclusions from the
weakening of a formula that were not derivable from the
formula itself.

Theorem 3.1 guarantees that we do not produce an
inconsistent set of beliefs by adding the weakening of
any formula to a consistent set.

Theorem 3.1 Let W be a consistent set of formulas,
and φ any formula. Then W∪{Wk(φ,W )} is consistent.

Proof. If φ is consistent with W , then Wk(φ,W ) = φ
and the result follows trivially. Otherwise, we will prove
by induction on the structure of the formula φ that the
weakening function produces a formula consistent with
W .

If φ is a literal (an atomic formula or the negation of an
atomic formula) or a universally quantified formula, then
Wk(φ,W ) = ⊤, and therefore W ∪ {⊤} is consistent,
provided that W is consistent.

The cases where φ is of the form ¬α or α⇒ β, reduce
to one of the other cases, since the weakening of φ in
these cases reduces to the weakening of a logical equiva-
lent formula, with either a quantifier, a disjunction or a
conjunction.

Assume that α, β and γ(p), where p is some con-
stant, are formulas that verify the theorem. Since
W ∪ {Wk(γ(p),W )} is consistent by hypothesis, then
W ∪{Wk(∃(x)γ(x),W )} is also consistent, by definition
of WkE. Accordingly, given that W ∪ {Wk(α,W )} is
consistent, and, therefore,W ∪{Wk(α,W )∨Wk(β,W )}
is consistent, we prove that W ∪ {Wk(α ∨ β,W )} is
also consistent. Finally, let W ′ = W ∪ {Wk(α,W )},
which, as we have seen, is consistent. Since, by hy-
pothesis, W ′ ∪ {Wk(β,W ′)} is consistent, i.e., W ∪
{Wk(α,W ),Wk(β,W ′)} is consistent, we have thatW ∪
{Wk(α,W ) ∧ Wk(β,W ′)} is consistent, from where it
follows trivially that W ∪ {Wk(α∧ β,W )} is consistent,
which finishes our proof.

Theorem 3.2 shows that the result of weakening a for-
mula is something not stronger than the original formula,
i.e., we are not introducing new consequences.

Theorem 3.2 Let W be a set of formulas, and φ any
formula. Then φ ⊢ Wk(φ,W ).

Proof. If φ ⊢ ⊥ then φ ⊢ ψ for every formula ψ, and in
particular for ψ = Wk(φ,W ). If φ is consistent with W ,



then Wk(φ,W ) = φ and, obviously, φ ⊢ φ = Wk(φ,W ).
Otherwise, as above, we will prove by induction on the
structure of the formula φ that the weakening function
produces a formula not stronger than the original.

The structure of this proof is similar to the previous
one: if φ is a literal or a universally quantified formula,
then Wk(φ,W ) = ⊤, and φ ⊢ ⊤; if φ is of the form ¬α
or α⇒ β, the weakening of φ reduces to the weakening
of a logical equivalent formula, with either a quantifier,
a disjunction or a conjunction.

By eliminating the existential quantifier, we have that
∃(x)γ(x) ⊢ γ(p) for some Skolem constant p. By hy-
pothesis, γ(p) ⊢ Wk(γ(p),W ) = Wk(∃(x)γ(x),W ), and,
therefore, ∃(x)γ(x) ⊢ Wk(∃(x)γ(x),W ).

Assume that α and β are formulas that verify the
theorem. Given that, by hypothesis, α ⊢ Wk(α,W ),
then α ⊢ Wk(α,W ) ∨ Wk(β,W ), and, likewise, since
β ⊢ Wk(β,W ) then β ⊢ Wk(α,W )∨Wk(β,W ). Joining
the two, we have that α∨β ⊢ Wk(α,W )∨Wk(β,W ), i.e.,
α∨β ⊢ Wk(α∨β,W ). To finish the proof, let’s see that
conjunction preserves the theorem: from α ⊢ Wk(α,W )
and β ⊢ Wk(β,W ∪ {Wk(α,W )}), it follows trivially
that α ∧ β ⊢ Wk(α ∧ β,W ).

3.3 Universal rules

One of the aspects that is still under study is the way
of weakening universal rules. In the last section, we said
that universal rules are weakened to ⊤, which is obvi-
ously too drastic a solution.

This aspect can be improved in two directions. When
considering a monotonic logic, a universal rule can be
weakened following the general ideas presented in last
section. For instance, if we have ∀(x) a(x) ∧ b(x), and
revise this with ¬a(p), the universal rule must be aban-
doned, but it can be weakened to ∀(x) b(x).

In another direction, i.e., when considering a non-
monotonic logic, the most natural way of weakening a
universal rule is to turn it into the “corresponding” rule
with exceptions (as illustrated by the example at the
end of section 3.1). Of course, defining the exact mean-
ing of “corresponding” rule with exceptions depends on
the particular non-monotonic logic being considered, but
we can state this informally as turning a universal like
“All As are Bs” into the default “Typically, As are Bs”.
After this is done, we have to see how these rules with
exceptions are to be integrated with the result of the
weakening function, and ensure that we don’t get some
unexpected results. Finally, the theorems proved in the
last section will not only have to be rephrased,5 but also
be more deeply changed. We want to guarantee for in-
stance, that we do not permissively revise a default the-
ory with one extension, to a default theory that has no
extensions.

5The result of weakening a formula will no longer consist
of just a classical formula, but probably of a set containing
one classical formula and some rule(s) with exceptions.

4 Discussion

As every belief revision theory, permissive belief revision
is well suited for situations where the available knowl-
edge changes frequently. These changes may be because
the world we are modeling changed or because we ac-
quired more knowledge about it.

Traditional belief revision theories [Nebel, 1990;
Fuhrmann, 1991] may produce different results when re-
vising logically equivalent theories with the same for-
mula. For example, the fact that both a and b are true
may be represented either by {a∧ b} or by {a, b}. These
two representations will provide different results when
revised with ¬a. Our theory will give the same result, b
in both situations. Although this example might sug-
gest that our approach is syntax-independent, a very
desirable property, this does not hold. For instance,
Wk(a ∨ b ⇒ c, {a,¬c}) = ⊤, but Wk((a ⇒ c) ∧ (b ⇒
c), {a,¬c}) = b⇒ c.

Using the permissive revision approach, the use of uni-
versal rules for representing typical situations does not
make strong commitments. Therefore, we can use uni-
versal rules to represent typical situations and let the
revision theory change them to defaults when the need
for doing so arises. This is useful because reasoning with
universal rules is simpler from a logical point of view, and
when the first exception is found the universal is turned
into a default rule.

Permissive revision does not simply give up beliefs.
Instead, it weakens them into beliefs that are consistent
with the rest of our knowledge but that still express as
much information as they can. Permissive belief revision
allows to keep more beliefs than what is usual when using
a foundations theory.6 This has the advantage of being
more compliant with what humans do [Harman, 1986],7

while keeping all the advantages of using a foundations
theory, namely the fact that we still have an explanation
for each belief that we hold.

Part of this work was implemented on top of SNeP-
SwD [Cravo and Martins, 1993], the implementation of
a truth maintenance system [Cravo, 1995]8 based on a
foundations belief revision theory [Cravo, 1993a] and a
non-monotonic logic SWMC [Cravo, 1993b]. The devel-
opment and implementation of an early version of this
work is described in [Cachopo, 1997].

We should point out that there are some situations
where the ability to adapt new beliefs to the existing
knowledge, instead of simply discarding them, can be
particularly useful:

• When incrementally building a knowledge base, it

6The distinction between coherence theories and founda-
tions theories is presented in [Harman, 1986]. And [Doyle,
1992] presents a good comparison between them.

7This was also documented by psychological experiments
in [Hoenkamp, 1987].

8The guarantee that each belief has (at least) one jus-
tification allows the use of a truth maintenance system to
efficiently make the changes proposed by the belief revision
theory.



is likely that whoever is doing it doesn’t have com-
plete knowledge from the beginning. So, the knowl-
edge will almost certainly have to be changed. If
these changes are made using permissive belief revi-
sion, they will be less sensitive to representation er-
rors, because the existing knowledge will be adapted
to the knowledge base, instead of simply being dis-
carded.

• The task of merging several knowledge bases can be
simplified, because when there is conflicting knowl-
edge, it can be adapted in a way that still keeps as
much knowledge as possible.

5 Future work

One of the aspects that we are still studying is the for-
malization of what it means to weaken a universal rule
both in a monotonic and a non-monotonic logic, as dis-
cussed in section 3.3.

It is also important to study the properties of the
permissive revision, namely which postulates it satisfies.
Because we can use a non-monotonic logic, the AGM
postulates will not be satisfied. The postulates that the
permissive belief revision operation satisfies have not yet
been studied.

The structured theories non-monotonic formalism de-
veloped in [Ryan, 1991] is used to define a new belief
revision operation, which produces results that resem-
ble ours. However, Ryan’s approach is mainly semantic,
while ours is syntactic. Although the two are not equiv-
alent, something might be gained in understanding the
differences between them. Understanding what weaken-
ing a formula is, in terms of models, could give us new
insight in some of the problems we have now, such as the
weakening of the universally quantified formulas.

We intend to continue the implementation of the weak-
ening of each type of formula on SNePSwD. A very sim-
ple program that weakens formulas was implemented,
but it includes neither the belief revision theory nor the
underlying logic.

The belief revision theory described in [Cravo, 1993a]
uses preferences to choose which rule(s) to abandon dur-
ing a contraction or a revision operation. We think it is
possible to use the same mechanism to select the rules
to be weakened, but this still needs more study.
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Portugal, November 1993.

[Cravo, 1995] Maria R. Cravo. BRS: A belief revision
sistem capable of non monotonic reasoning and belief
revision. Technical Report GIA 95/01, Instituto Supe-
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